
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.
This thesis was completed in cooperation with the

Institute for Information Superiority and Innovation.

LINUX, OPENBSD, AND TALISKER:
A COMPARATIVE COMPLEXITY ANALYSIS

by

Kevin R. Smith

March 2002

 Thesis Advisor: Cynthia E. Irvine
 Second Reader: Timothy E. Levin

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Linux, OpenBSD, and Talisker: A Comparative Complexity Analysis

6. AUTHOR(S) Kevin R. Smith

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Security engineering requires a combination of features and assurance to provide confidence
that security policy is correctly enforced. Rigorous engineering principles are applicable across
a broad range of systems. The purpose of this study is to analyze and compare three operating
systems, including two general-purpose operating systems (Linux and OpenBSD) and a
commercially available, embedded operating system (Talisker). The basis for the comparison
considers secure software design principles, such as information hiding, hierarchical
structuring, and modularity, as well as software complexity metrics, such as the McCabe
Cyclomatic Complexity and the number-of-lines-of-code. In this analysis, we use a reverse
engineering tool to show how the three operating systems compare to each other with respect to
the qualities of a secure operating system design. The operating systems, their kernels, and
their scheduling subsystems are analyzed and compared. From the results, it is shown that the
OpenBSD operating system, kernel, and scheduler are the best when considering hierarchical
structuring, modularity, and information hiding. The Linux kernel and scheduler and the
Talisker operating system are least complex when considering the McCabe complexity and the
number-of-lines-of-code.

15. NUMBER OF
PAGES

153

14. SUBJECT TERMS Protection, Secure Operating Systems, Security Kernel, Cyclomatic
Complexity, Software Development, Reference Monitor Concept, Trusted Computing
Base, Multics, Verification, Assurance.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.
This thesis was completed in cooperation with the

Institute for Information Superiority and Innovation.

LINUX, OPENBSD, TALISKER: A COMPARATIVE COMPLEXITY ANALYSIS

Kevin R. Smith
Lieutenant, United States Navy
B.S., Boston University, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

Author:
Kevin R. Smith

Approved by:
Cynthia Irvine, Thesis Advisor

Timothy Levin, Second Reader

Christopher Eagle, Chair
Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Security engineering requires a combination of features and assurance to provide

confidence that security policy is correctly enforced. Rigorous engineering principles are

applicable across a broad range of systems. The purpose of this study is to analyze and

compare three operating systems, including two general-purpose operating systems

(Linux and OpenBSD) and a commercially available, embedded operating system

(Talisker). The basis for the comparison considers secure software design principles,

such as information hiding, hierarchical structuring, and modularity, as well as software

complexity metrics, such as the McCabe Cyclomatic Complexity and the number-of-

lines-of-code. In this analysis, we use a reverse engineering tool to show how the three

operating systems compare to each other with respect to the qualities of a secure

operating system design. The operating systems, their kernels, and their scheduling

subsystems are analyzed and compared. From the results, it is shown that the OpenBSD

operating system, kernel, and scheduler are the best when considering hierarchical

structuring, modularity, and information hiding. The Linux kernel and scheduler and the

Talisker operating system are least complex when considering the McCabe complexity

and the number-of-lines-of-code.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PURPOSE .. 1
B. MOTIVATION.. 1
C. EXPECTED BENEFITS OF RESEARCH .. 2
D. RESEARCH OBJECTIVES .. 2
E. THESIS ORGANIZATION ... 3

II. OVERVIEW OF SECURE OPERATING SYSTEMS.. 5
A. INTRODUCTION... 5
B. ASSESSMENT OF THREATS TO SECURITY ... 5
C. PROTECTION IN OPERATING SYSTEMS.. 10
D. THE REFERENCE MONITOR CONCEPT ... 11
E. THE TRUSTED COMPUTING BASE... 16
F. CONCLUSION.. 17

III. BUILDING A SECURE OPERATING SYSTEM... 19
A. INTRODUCTION... 19
B. THE SECURITY POLICY AND MODEL .. 20

1. The Policy... 20
2. The Model .. 20

C. TRUSTED SYSTEM DESIGN ELEMENTS... 21
D. SECURE SOFTWARE DESIGN PRINCIPLES 23

1. Modular Programming... 23
2. Hierarchical Structuring .. 24
3. Information Hiding ... 25

E. THE SECURITY KERNEL... 26
F. EVALUATION.. 27
G. ASSURANCE .. 30
H. THE MULTICS EXPERIENCE ... 31

1. Constructing a Secure System.. 32
2. Common Mechanism Risks.. 33
3. Complexity and Dependencies ... 35
4. Security Kernel Design ... 36

a. Non-kernel Software .. 37
b. Multics Security Kernel Goals ... 37
c. Categories of Security Kernel Activities 37
d. Redefining Key Aspects of the Project................................... 38
e. Conclusions of the Kernel Design and Redesign.................. 39

IV. MANAGING COMPLEXITY IN OPERATING SYSTEM DESIGN................. 41
A. INTRODUCTION... 41
B. BUILDING SYSTEMS THAT FAIL .. 42
C. SOFTWARE COMPLEXITY ... 43

 viii

D. COMPLEXITY AND TESTING... 45
E. MCCABE CYCLOMATIC COMPLEXITY METRIC............................ 47

1. Definition and Applications.. 47
2. Limiting the Cyclomatic Complexity... 49
3. Simplified Complexity Calculations .. 51
4. Automated Tool ... 53

V. IMAGIX 4D REVERSE ENGINEERING TOOL... 55
A. INTRODUCTION... 55
B. DATA MODEL ... 55
C. VIEWS AND DISPLAY WINDOWS.. 57

1. Graph Window .. 57
2. Graph Symbols Key .. 60
3. List Window... 60
4. File and Class Browsers.. 60
5. Flow Chart ... 61
6. File Editor .. 62
7. Reports ... 64

D. MODES OF OPERATION .. 64
1. Browsing the Source Code.. 65
2. Exploration and Analysis of the Source Code 66
3. Control Flow Analysis of the Source Code 69

E. CONCLUSION.. 71

VI. COMPLEXITY ANALYSIS OF LINUX.. 73
A. INTRODUCTION... 73
B. BACKGROUND.. 73

1. Linux... 73
2. OpenBSD.. 74
3. Talisker... 76

C. BASIS FOR ANALYSIS... 77
1. Hierarchical Structuring .. 77
2. Modular Programming... 78
3. Information Hiding ... 79
4. McCabe Cyclomatic Complexity ... 80
5. Number-of-Lines-of-Code .. 81

D. SOURCE CODE FILES INCLUDED IN THE ANALYSIS..................... 81
1. Operating System Source Code ... 81
2. Kernel Source Code .. 82

E. INFORMATION GATHERED FROM IMAGIX 4D 84
1. Funcition Call Graphs .. 84

a. Kernel Function Hierarchies... 85
b. Schedule Module Fu ction Hierarchies 88
c. Operating System Layering.. 91
d. Kernel Layering.. 94

2. File Summary Reports .. 96
a. Operating System Files .. 97

 ix

b. Kernel Files... 98
3. Function Information Reports ... 99

a. Operating System Functions.. 100
b. Kernel Functions ... 101
c. Schedule Module Functions .. 103

4. Global Variable Graphs ... 105
a. Kernel Global Variables... 106
b. Schedule Module Global Variables 109

F. ANALYSIS OF DATA GATHERED.. 111
1. Hierarchical Structuring .. 111

a. Operating System Layering.. 112
b. Kernel Layering.. 112

2. Modularity ... 113
a. Operating System Code .. 113
b. Kernel Code .. 114
c. Schedule Module Code... 115

3. Information Hiding ... 116
a. Operating System Global Variables..................................... 116
b. Kernel Global Variables... 117
c. Schedule Module Global Variables 118

4. McCabe Cyclomatic Complexity Distribution 118
a. Operating System Complexity .. 119
b. Kernel Complexity .. 119
c. Schedule Module Complexity .. 120

5. Number-of-Lines-of-Code .. 121
a. Operating System Code .. 121
b. Kernel Code .. 122
c. Schedule Module Code... 122

G. COMPLEXITY IN OPERATING SYSTEMS... 123
H. CONCLUSION.. 123

VII. CONCLUSION.. 125
A. OPERATING SYSTEM SECURITY REQUIREMENTS...................... 125
B. SECURE OPERATING SYSTEM DEVELOPMENT............................ 125
C. COMPARATIVE ANALYSIS CONCLUSIONS AND COMMENTS.. 127
D. FUTURE WORK .. 129

LIST OF REFERENCES ... 131

INITIAL DISTRIBUTION LIST .. 135

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. User and Operating System Protection Domains. ... 12
Figure 2. Gate Calls in Protection Domains. .. 13
Figure 3. The Reference Monitor Concept. .. 14
Figure 4. Sample Monolithic TCB Architectures... 16
Figure 5. TCSEC Requirements for Assurance. ... 29
Figure 6. CC Evaluated Assurance Levels (EAL).. 30
Figure 7. Euclid Module Code With Cyclomatic Complexity [MCC96]....................... 48
Figure 8. Threshold Values... 50
Figure 9. Binary and Multi-way Decisions [MCC96]. ... 51
Figure 10. Planar Control Flow Graph With Regions [MCC96]...................................... 52
Figure 11. Complexity Plug-in Design and Implementation Scores. 54
Figure 12. Graph Window - Set View Options. ... 56
Figure 13. List Options Menu for Imagix 4D Database. .. 57
Figure 14. Graph Window and List Window. .. 58
Figure 15. Graph Symbols Key. ... 59
Figure 16. File Browser. ... 61
Figure 17. Flow Chart and Symbols. .. 62
Figure 18. File Editor.. 63
Figure 19. Typical Report – Function Information. ... 64
Figure 20. Find Query in Browse Mode... 65
Figure 21. Grep Query in All Modes.. 66
Figure 22. Find Query Options in Explore and Analyze Modes. 67
Figure 23. Add Function in Explore and Analyze Modes. ... 68
Figure 24. Analyze Mode - Software Complexity Analysis... 69
Figure 25. Threshold Complexity Level Setting. ... 69
Figure 26. Control Flow Analysis. ... 70
Figure 27. Linux Kernel – Function Hierarchy (Compact View). 86
Figure 28. OpenBSD Kernel – Function Hierarchy (Compact View).............................. 87
Figure 29. Talisker Kernel – Function Hierarchy (Compact View). 88
Figure 30. Linux Scheduling – Function Hierarchy (Compact View). 90
Figure 31. OpenBSD Scheduling – Function Hierarchy (Compact View). 90
Figure 32. Talisker Scheduling – Function Hierarchy (Compact View).......................... 91
Figure 33. Linux Operating System Layering. ... 92
Figure 34. OpenBSD Operating System Layering. .. 93
Figure 35. Talisker Operating System Layering... 94
Figure 36. Linux Kernel Layering. ... 95
Figure 37. OpenBSD Kernel Layering. .. 95
Figure 38. Talisker Kernel Layering. ... 96
Figure 39. Linux Operating System – File Summary Report. .. 97
Figure 40. OpenBSD Operating System – File Summary Report. 97
Figure 41. Talisker Operating System – File Summary Report. 97

 xii

Figure 42. Linux Kernel – File Summary Report... 98
Figure 43. OpenBSD Kernel – File Summary Report. ... 98
Figure 44. Talisker Kernel – File Summary Report. .. 98
Figure 45. Linux OS – Function Information Sorted By Complexity. 100
Figure 46. OpenBSD OS – Function Information Sorted By Complexity. 100
Figure 47. Talisker OS – Function Information Sorted By Complexity. 101
Figure 48. Linux Kernel – Function Information Sorted By Complexity. 102
Figure 49. OpenBSD Kernel – Function Information Sorted By Complexity. 102
Figure 50. Talisker Kernel – Function Information Sorted By Complexity................... 103
Figure 51. Linux Kernel Schedule Module – Function Information Report. 103
Figure 52. OpenBSD Schedule Module – Function Information Report. 104
Figure 53. Talisker Kernel Schedule Module – Function Information Report............... 104
Figure 54. Linux Kernel – Global Variables. ... 106
Figure 55. OpenBSD Kernel – Global Variables. .. 107
Figure 56. Talisker Kernel – Global Variables... 108
Figure 57. Linux Kernel Schedule Module – Global Variables. 109
Figure 58. OpenBSD Kernel Schedule Module – Global Variables. 110
Figure 59. Talisker Kernel Schedule Module – Global Variables.................................. 111

 xiii

LIST OF TABLES

Table 1. Linux 2.4.17 Source Directories – X86 Architecture...................................... 82
Table 2. OpenBSD 2.9 Source Directories – X86 Architecture.................................... 82
Table 3. Talisker Source Directories – X86 Architecture. .. 82
Table 4. Linux Kernel Source Files – All Platforms... 83
Table 5. Linux Kernel Source Files – X86 Architecture... 83
Table 6. OpenBSD Kernel Source Files.. 83
Table 7. Talisker Kernel Source Files. .. 84
Table 8. Operating System Layers and Dependencies. ... 112
Table 9. Kernel Layers and Dependencies. ... 113
Table 10. Summary of Operating System Modules and Functions............................... 114
Table 11. Summary of Kernel Modules and Functions... 114
Table 12. Summary of Schedule Module Functions and Callers. 115
Table 13. Operating System Global Variable Summary... 116
Table 14. Kernel Global Variable Summary... 117
Table 15. Schedule Module Global Variable Summary.. 118
Table 16. Operating System Complexity Distribution.. 119
Table 17. Linux Kernel Complexity Distribution. .. 120
Table 18. Schedule Module Dependencies and Complexity Summary. 120
Table 19. Operating System - Lines of Code Complexity Summary............................ 121
Table 20. Kernel - Lines of Code Complexity Summary.. 122
Table 21. Schedule Module - Lines of Code Complexity Summary. 122
Table 22. Summary of Comparative Analysis. ... 124

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE
Security engineering requires a combination of features and assurance to provide

confidence that security policy is correctly enforced. Rigorous engineering principles are

applicable across a broad range of systems.

The purpose of this study is to analyze and compare three operating systems,

including two general-purpose operating systems (Linux and OpenBSD) and a

commercially available, embedded operating system (Talisker). The basis for the

comparison considers secure software design principles, such as information hiding,

hierarchical structuring, and modularity, as well as software complexity metrics, such as

the McCabe Cyclomatic Complexity and the number-of-lines-of-code. In this analysis,

we use a reverse engineering tool to show how the three operating systems compare to

each other with respect to the qualities of a secure operating system design.

B. MOTIVATION
The questions that continuously challenge and trouble the typical desktop owners,

using their personal computers for records and data storage, as well as government

agencies with a vested interest in information security, is what flaws that have yet to be

discovered are resident in their system, and how will those flaws affect the end user? Is it

possible that undocumented functionality, whether harmless or malicious, exists inside

the source code? It has been noted that contemporary systems, in general, provide little

protection against accidental violation of operating system safeguards, let alone any

protection against deliberate attempts to gain control of the operating system. This is

unacceptable. There needs to be some type of defined controls or limitations enforced by

the operating system to protect each user from all other users. Additionally, as the

Trusted Computer Security Evaluation Criteria [DOD85] states in its accountability

control objective, systems used to process or handle classified or other sensitive

information must assure individual accountability whenever either a mandatory or

discretionary security policy is invoked.

The steps to building a secure system involve creating a model or ideal

description of a secure system from its uses, environment, and threats; developing the

2

security portion of the kernel to handle access control and authorization mechanisms; and

then integrating the kernel with the rest of the system. It is the omission of this design for

secure operation and the lack of strict control of programs in execution that characterizes

most contemporary systems, and which in combination with the size and complexity of

the systems makes it impossible to conduct meaningful testing or certification to

determine that the systems are secure. Any type of methodical design is apparently

undesirable in the commercial arena because products so developed take to much time to

get to market. In addition, these methods require a higher intellectual caliber than that

required by the customary commercial approaches.

Nevertheless, some basic guidelines in secure operating system design need to be

established and shared with the commercial and open operating system worlds. Thus, the

use of good hierarchical structuring, accurate problem decomposition and modular

programming, and the proper design of interfaces should be applied to all system designs.

C. EXPECTED BENEFITS OF RESEARCH
By providing a comparative analysis between several systems, political and

military decision makers will be able to see what characteristics of a secure operating

system are desired, and how the systems available today fare against these qualities as

well as each other. With the threats in the computer security problem evolving in an ever

growing domain of users world-wide, the government and the military need to consider

the benefits of building a secure operating system and demand that commercial-off-the-

shelf vendors meet a certain standard of assurance using independent code audits. This

research will provide a foundation for understanding the complexity that is found in

commercial operating systems as well as their lack of secure software design principles.

D. RESEARCH OBJECTIVES
The principal, analytical approach used in this thesis is that of reverse

engineering. Reverse engineering starts with an existing system, analyzing it to identify

its components, their behavior, and the interrelationships among components. A

principal benefit of reverse engineering is the discovery of useful information and

structures, such as reusable data models, control structures, interface descriptors, design,

behavior properties, function and performance requirements, data structures, algorithms,

and architecture. In this research, we plan to utilize the Imagix 4D reverse-engineering

3

and documentation tool to provide a fair comparative analysis of the Linux, OpenBSD,

and Talisker operating systems.

E. THESIS ORGANIZATION
This thesis consists of seven chapters. Chapter II provides an overview of secure

operating system characteristics. Chapter III discusses the methodology for building

secure operating systems using trusted system design elements and software design

principles. A case study of the Multics Project is then presented to review the lessons

learned from retrofitting security in an existing system. Chapter IV describes the

management of complexity in operating system development and introduces the McCabe

Cyclomatic Complexity metric. Chapter V reviews the Imagix 4D reverse-engineering

and documentation tool that was used in the comparative analysis. Chapter VI examines

the Linux, OpenBSD, and Talisker operating systems with the Imagix 4D tool, shows the

data that was gathered with illustrations, and provides the results of the comparative

analysis. Chapter VII concludes the thesis with a review of the findings and suggestions

for future work.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. OVERVIEW OF SECURE OPERATING SYSTEMS

A. INTRODUCTION
When computers were first used for automated data processing, few considered

the importance of information security outside the realm of physical security. If the

system designer never addressed parameter checking to protect the user from crashing his

own system, then why would he consider classes of attacks where the user may be

playing a malicious role? Security specialists, such as James Anderson [AND72], have

found it useful to place potential security violations into three different categories:

unauthorized information release, unauthorized information modification, and

unauthorized denial of service. Today, security professionals refer to these three

categories simply as confidentiality, integrity, and availability respectively.

To develop a secure operating system that addresses the protection of information

from potential security breaches, the computer security problem must be well understood.

In this chapter, an assessment of the threats to security will be given, including a

classification of attackers followed by a set of techniques whereby computer misuse

results in the unauthorized disclosure or modification of information. After providing the

motivation for protection in operating systems, the reference monitor concept and the

notion of a trusted computing base will be introduced. These concepts coupled together

will provide a set of principles that can be applied both to the selection and design of

security features, the developmental assurance required to implement a secure system,

and how the mechanization of the security policies can be implemented as a subset of the

operating system.

B. ASSESSMENT OF THREATS TO SECURITY
Undertaken by the Air Force, the Advanced Research Projects Agency (ARPA),

and other defense agencies, a study was conducted to provide a solution for the technical

problems associated with controlling the flow of information in resource and information

sharing computer systems [AND72]. The resulting technical report, commonly called the

“Anderson Report,” described an architectural framework for handling mediation of

access in the face of potentially hostile users. It additionally noted that contemporary

systems, in general, provided little protection against accidental violation of the operating

6

system, let alone any protection against deliberate attempts to gain control of the

operating system. This was unacceptable. There needed to be some type of defined

controls or limitations enforced by the operating system to protect each user from all

other users. Due to the problems in hardware and operating system design at the time,

the ad hoc programs developed to mediate between applications and operating systems

were significant in size and were only capable of providing a degree of security in a non-

malicious environment, but they did not provide adequate protection to defend against a

hostile programmer.

One attempt to address security flaws in operating system and application design

is appropriately named the “penetrate and patch” approach. Using this methodology, a

“tiger team” of testers, code auditors, and hostile programmers are tasked to test the

protection offered by an operating system, exploiting implementation errors and design

oversights. Another team of designers then patches these flaws and vulnerabilities, after

which the tiger team will again attempt to penetrate the operating system. Anderson

[AND72] commented in his report that any attempts to “patch” an off-the-shelf system

for security tended to obscure penetration routes, but had little impact on the underlying

security problems. His conclusion was that if a system were designed to include many

central privileged functions, it would inevitably become quite large and capable of

concealing numerous flaws. These are the system flaws in particular that the malicious

user tries to find and exploit in the pursuit of gaining supervisory control, commonly

called “administrator level privileges” of the system.

Once supervisory control is obtained, the malicious user now “owns the box” and

can reference any data or programs in the system. As illustrated by Brinkley and Schell

[BRI93], the threat of malicious users does not end with just the exploitation of errors in

the operating system code. Subversion, which can occur at any time in the life cycle of a

system, can result in the exploitation of clandestine mechanisms called artifices that are

constructed and inserted into a system to circumvent normal control or protection

features. The most common types of artifices are known as trap doors, which permits the

attacker to bypass internal controls at a later time. To support the argument that the DoD

needs to employ secure operating systems for sufficient protection against these

subversive threats, some recent examples of possible threats will be reviewed.

7

The questions that continuously challenge and trouble the typical desktop owners,

using their personal computers for records and data storage, as well as several

government agencies with a vested interest in information security, is what flaws that

have yet to be discovered are resident in their system, and how will those flaws affect the

end user? Is it possible that undocumented functionality, whether harmless or malicious,

exists inside the source code? Involving the popular software-distributor Microsoft,

recent examples of possible subversive threats have been documented in the media.

From January 30-31, 2001, someone posing as a Microsoft employee tricked VeriSign,

which hands out digital certificates, into issuing two certificates in Microsoft’s name

[LEM01]. Empowered with these Verisign-issued certificates, a malicious user could

post a virus on the Internet that would appear to be from Microsoft, but might actually

wipe an unsuspecting user’s hard drive, for example. On Saturday, October 14, 2001,

hackers gained access to Microsoft’s internal network system and roamed source code

files and other high-level secrets for approximately 12 days to five weeks [BBC01]. If

the hackers had managed to access the source code of a Microsoft program already on the

market, they would have been able to distribute versions of the product that looked

legitimate but contained security holes or viruses. After the unfortunate events of

September 11, 2001, when commercial airliners piloted by hijacking terrorists struck the

World Trade Center and the Pentagon, a suspected member of the Al Qaeda terrorist

network claimed that Islamic militants infiltrated Microsoft and sabotaged the company’s

Windows XP operating system [MCW01]. These and other examples have motivated

computer scientists, information technology managers, and the general public to rethink

what should be more important in an operating system design – security or functionality.

Profiles of the different adversaries will be reviewed to build an understanding of

the threat environment in which a computer system resides. Ross Anderson [AND96]

categorized hostile attackers in three brief bullets:

• Class I (Clever Outsiders): These individuals are often very intelligent but

may have little knowledge of the system internals. They only have access to

moderately sophisticated equipment and often take advantage of known flaws.

8

• Class II (Knowledgeable Insiders): These may be employees that have

substantial specialized technical education and experience, have varying

degrees of understanding certain parts of the system, but potentially have

unlimited access. They often have sophisticated tools and instruments for

analysis.

• Class III (Funded Organizations): These groups are able to assemble teams of

specialists with related and complementary skills backed by great funding and

resources. They are capable of in-depth analysis, designing sophisticated

attacks, and using advanced analysis tools.

This taxonomy gives a backdrop to the flavor of malevolent individuals and

organizations that exist in the world today. These adversaries may utilize various misuse

techniques as presented by Brinkley and Schell [BRI93], including (1) human error, (2)

user abuse of authority, (3) direct probing, (4) probing with malicious software, (5) direct

penetration, and (6) subversion of security mechanism. Common to these six techniques

are two elements. First, a flaw or vulnerability in a computer system exists in either the

design or implementation. And second, the possible threat of attack exists by an

authorized or unauthorized user (or agent) of the system attempting to exploit the flaw.

The product of these two factors is equivalent to the amount of risk a user needs to

consider when operating a system.

We will examine these misuse techniques and their related countermeasures. The

first of these is human error, which happens to be probabilistic in nature. This technique

may involve a combination of human, hardware, and timing factors that could allow

unauthorized access to information. Better human-computer interactive design should

provide for a simple user interface to reduce the probability of human error.

User abuse of authority, also known as the insider threat, is the second misuse

technique. An example of this is a bank teller performing an illegal transaction. This

authorized individual abuses the trust and authority granted in order to perform an

irresponsible act for personal gain. To prevent this behavior, the system should confine

the authorized users to their own domains of authority using techniques such as

identification and authentication, and should audit their access requests.

9

Guessing passwords or searching for readable files are examples of direct

probing, the next class of techniques to protect against. In this category, individuals try

to use computer systems in ways not intended by the system designers or owners. Even

though it is unethical to probe through another machine’s file directory, nothing prevents

or disallows a user from doing so. Correct system configuration and fail-safe defaults,

which bases access decisions on permission rather than exclusion, are some examples of

preventive measures to help defend against this class of misuse.

Probing with malicious software is similar to direct probing in that it is allowed

but unethical; however, in this technique attackers employ specially developed software

for the express purpose of carrying out the probing for them. A Trojan Horse, which

contains overt functionality attractive to an unsuspecting user while performing covert

functionality that has illegitimate side effects unknown to the user, is an example of such

malicious software. There are several types of Trojan Horses in existence, including (1)

viruses, which are pieces of self-replicating code that attach themselves to other programs

in order to be executed, (2) time bombs, which are Trojan Horses set to trigger at a

particular time, (3) logic bombs, which are Trojan Horses set to trigger upon the

occurrence of a particular logical event, and (4) worms, which, like viruses self-replicate,

but spread from system to system on their own exploiting system vulnerabilities. To

prevent these occurrences, enforcement of non-discretionary policies and strong life cycle

assurance for systems is required.

In the case of bypassing intended security controls, direct penetration is one of

the more difficult techniques to protect against. Penetration is defined as the exploitation

of a flaw using an attack to achieve an objective (compromise confidentiality, integrity,

or denial of service). In many cases, one simply needs to find a single flaw in the

implementation of the operating system or hardware and write a program to take control

of the entire computer system. For protection, formal methods and good software

engineering need to be applied to rid the system of flaws. This is where time and cost

begin to grow significantly, adding difficulty to the design and construction of a secure

operating system that is safe from direct penetration. Providing assurance that the

operating system is implemented correctly and operates in accordance with policy is

exercised throughout the management of the system lifecycle.

10

Subversion of security mechanism, the last of the six techniques, involves the

covert and methodical undermining of internal system controls to allow unauthorized and

undetected access to information within the computer system. An example of this is the

insertion of an undocumented feature, like an Easter egg (www.eeggs.com), on a machine

during the manufacturing process. The major concern of this technique is that subversion

is possible in any activity of the system life cycle, including design, implementation,

distribution, installation, and use. For protection, controls must be built to specifications

in a non-malicious environment and be simple and small enough to verify correct

behavior when subjected to testing and evaluation.

From the TCSEC definition [DOD85], protection must be defined from the start

in terms of the perceived threats, risks, and goals of an organization. With a review of

the threats to security completed, it is necessary to elaborate on protection to give a flavor

of what is possible in the design of a secure operating system.

C. PROTECTION IN OPERATING SYSTEMS
In 1971, Butler Lampson [LAM71] defined “protection” as a general term for all

of the mechanisms that control the access of a program to system resources. The original

motivation for putting such mechanisms into computer systems was to keep one user’s

malice or error from harming others by destroying or modifying data, reading or copying

data without permission, or degrading the service of another user.

Saltzer and Schroeder [SAL75] suggested a division of protection schemes

according to functional properties into five categories: unprotected, all-or-nothing,

controlled sharing, user-programmed controlled sharing, and putting attributes on

information. The unprotected systems have no mechanisms for preventing a determined

user from having access to every piece of data stored inside the machine. All-or-nothing

systems provide for the isolation of users. Total sharing of some information, which is

available to all, sometimes moderates this type of system. Controlled sharing systems,

which are significantly more complex, control explicitly who may access each data item

resident in the system. An Access Control List (ACL) is an example of this type of

system. User-programmed control sharing systems are used in the case that access may

be restricted to a file in such a way not provided by the controlled sharing operations.

11

Gates, time of day, and “two person control” are all examples of this type. The systems

that put attributes on information are able to maintain some control over the use of label-

based information. In all these protection schemes, maintaining confidentiality of

information with access control mechanisms is the objective.

The access control model for confidentiality was first introduced by Lampson

[LAM71] and was refined by Graham and Denning [GRA72]. Harrison, Ruzzo, and

Ullman [HAR76] later used Lampson’s concept of an access control model to analyze the

complexity of determining the effects of a particular access control policy. Their

conclusions showed that the problem of building a general-purpose algorithm to

determine whether an arbitrary program, comprised of simple primitives for updating an

access matrix, leaks an access right is undecidable. Therefore, the fundamental result of

the HRU Model is that one cannot construct an algorithm to examine all arbitrary systems

for leakage of access rights.

Bell and LaPadula’s [BEL73] formal policy model included mandatory access

control. The model introduced the additions of labels for subjects and objects and the

simple security policy and the *-property. These two properties for confidentiality

provided two rules for information flow between subjects and objects employing labels:

(1) no read up (simple security policy) and (2) no write down (*-property or confinement

property). The first rule mimics the paper world where users can only view data they are

authorized to see, and the second rule prevents Trojan Horse programs from copying

sensitive data to files that are accessible by unauthorized users.

To assist with the design of a system, a model can provide a coherent and

consistent expression of the policy. But before the implementation of an operating

system can be described, a review of an abstract model, the reference monitor concept, is

required to understand the necessary and sufficient criteria for a system to provide

confidence of policy enforcement in the face of malicious threat.

D. THE REFERENCE MONITOR CONCEPT
The Reference Monitor Concept, which emerged as part of the Anderson Report

in 1972, provides a description of an ideal mechanism representing the necessary and

sufficient functions to enforce a policy to control access by subjects to objects. A subject

12

is defined as an active entity that causes information to flow among objects or changes

system state. In comparison, an object is a passive entity that contains or receives

information. Access to an object implies access to the information it contains. Hence,

the reference monitor is an abstraction that controls all access or the collection of access

controls applied to objects like devices, files, memory, directories, and interprocess

communications [PFL97]. The process is simply a program in execution characterized

by a single current execution point, represented by the machine state, and an address

space. A “domain” is the set of objects that a subject has the ability to access [DOD85].

To protect the memory of each domain, an implementation technique called

protection domains partitions the memory into more privileged and less privileged

regions. Programs in lesser-privileged domains cannot arbitrarily read and write files or

execute programs in more privileged domains. Figure 1, which illustrates two separate

protection domains, demonstrates this concept. When the process calls an operating

system function, it changes from the user subject to the operating system subject of the

process. Since the operating system is a more privileged domain, the user programs

cannot arbitrarily read or write databases or execute code in the operating system domain.

User

Domain

OS

Domain

User

Program

DAC

Program

Process User

Subject

OS

SubjectFunction

OS

Figure 1. User and Operating System Protection Domains.

Within this system model, everything belongs to some process and cannot be accessed by

any other process other than its owner. The user program can, however, call into the

higher domain in a controlled way, for example, using a gate or trap mechanism that

allows lesser-privileged subjects to invoke services of greater privileged subjects as

shown in Figure 2. Saltzer and Schroeder [SAL75] proposed this concept of protection in

computer systems with their three requirements for kernel isolation, including (1) a

privileged state bit, (2) the partition of protected memory, and (3) a mechanism that

authorizes transfer of control from an unprotected level to one that is protected. In an

13

Intel X86 processor, the features that are available to support these respective

requirements include a protection bit, descriptor table segmentation, and four rings of

hardware privilege levels.

User

Domain

OS

Domain

User

Program

DAC

Program

Process User

Subject

OS

Subject

GateGate

Function

OS

Figure 2. Gate Calls in Protection Domains.

Ring brackets are a software implementation of protection domains, where each

object has a “bracket” of values that specifies what domains can access the object. An

example ring brackets policy, utilizing the Intel privilege levels (PL0-PL3) built into the

hardware, could be [R1, R2, R3], where each Rn is assigned a value from {PL0…PL3}. In

this instance, PL0-R1 is the write bracket (viz, subjects PL0 through the value in R1 may

write to the associated object), PL0-R2 is the read bracket, and PL0-R3 is the execute

bracket. An example of such an implementation can be found in GEMSOS [FER95].

The abstract reference monitor concept can mediate the access requests between subjects

and objects according to such a ring construct.

The implementation of the reference monitor has been called the reference

validation mechanism, a combination of hardware and software [AND72]. The current

access authorizations, graphically modeled as the current access matrix, represent who

has access to what and with what modes and rights. This can be abstractly described

using a set of tuples indicating that a subject has current access to an object with a

particular mode, <subject, object, access mode>. To enforce policy, the mechanism

requires that all subjects and objects have policy-relevant attributes associated with them

and maintained in the authorization database, graphically modeled as the authorization

matrix. Figure 3 depicts an abstract model of the reference monitor.

14

Figure 3. The Reference Monitor Concept.

From this abstract model, one can observe that the reference monitor enforces the

authorized access relationships between the subjects and objects of a system. User

identification, clearance levels, and current session levels could all be attached to a

certain subject acting on a users behalf. An object, in comparison, could have access

control lists, ring brackets, and sensitivity labels that contain information about who can

access the object and what levels of clearance are required. Variations of an access

control policy that is either identity-based or label-based can define the specific access

control requirements.

 To establish that the model’s behavior complies with the requirements of an

access control policy, a “basic security theorem” may be included in the model. For

example, if it is shown that the current access authorizations (CAA) is a subset of the

authorization database (AD) in the initial state and in every operation, and the AD is

consistent with the access control policy, then we can conclude that the module enforces

the policy. The practical utility of this model is that the CAA corresponds well with the

descriptor-based hardware mechanisms, and it permits the basic security theorem to be

expressed as an invariant. Access relationships of getting access and releasing access

15

between subjects and objects, as well as the reference relationships like reading and

writing, define the abstract reference monitor functions.

These abstract access and reference functions are implemented by the reference

validation mechanism, which constitutes the necessary and sufficient functions for

enforcing a policy of controlled access to objects by subjects. By definition, it is required

to be tamperproof, always invoked, and small enough to be subject to analysis and tests

to assure that it is correct [AND72]. To be tamperproof, the mechanism needs to be self-

protecting and must be constructed so that the mechanisms it relies on are at least as

assured as it is. (This will be discussed later when the notion of hierarchical layering of

system dependencies will be introduced.) To be always invoked, mediation of access to

all resources needs to always be “on” and cannot be circumvented. And as defined

earlier by necessary and sufficient, it needs to be small enough to ensure that accesses to

objects are being mediated (viz, it is sufficient to the task), and nothing extra considered

irrelevant to the requirement for access validation is included (viz, only the necessary

functions are included).

Relative to the characteristics discussed above, the crucial role of the reference

monitor in enforcing security means that it must function correctly. But because the

likelihood of correct behavior decreases as the complexity and size of a program increase,

the best assurance of correct policy enforcement is a small, simple, understandable

implementation [MYE80]. Therefore, to achieve assurance that the reference validation

mechanism is correctly implemented, minimization and rigorous software engineering is

required. This topic will be discussed later in the following chapter.

It is important to remember that the mechanism described above is not a model of

secure computing. Rather it is a device to provide containment of programs in execution

[AND72]. Therefore, since the reference monitor only represents the access control

mechanism, elements of the system for supporting the security policy also need to be

included in the system implementation, including (1) identification and authentication,

(2) security administrator interfaces, and (3) audit retrieval and analysis functions. With

all of these supporting functions along with the reference validation mechanism, one

16

could integrate all of the system security controls into a portion of the operating system

code. This leads us to the notion of a trusted computing base.

E. THE TRUSTED COMPUTING BASE
The National Institute of Standards and Technology (NIST), defines the trusted

computing base (TCB) as the set of all protection mechanisms in a computing system,

including the hardware, firmware, and software, which together enforce a unified security

policy over a product or system [NIS91]. It contains all the elements of a system for

supporting the security policy and for the support of the isolation of objects upon which

protection is based.

SSF

RVM

HW

HW

RVM

SSF

A

C D

B

Figure 4. Sample Monolithic TCB Architectures.

Figure 4 depicts sample monolithic TCB architectures. The hash marks drawn

around portions of the system delineate the security perimeter of the trusted computing

base. This perimeter includes all of the elements of the system for supporting the security

policy and for the support of the isolation of objects upon which protection is based. For

instance, the TCB in general-purpose system A of Figure 4 includes the operating system,

the security support functions (SSF), such as identification, authentication, and auditing,

the reference validation mechanism, and the hardware, while the systems in parts B and C

17

exclude the general-purpose operating system functions from the TCB perimeter. In

comparison, the embedded system in part D may include part of the application layer,

thereby enclosing the entire system within the TCB perimeter. In this embedded system

example, the TCB is also called the kernel like the system observed in part B. The kernel

can also be a subset of the TCB, as demonstrated in system C. However, unlike any of

the architectures shown, the TCB term can include systems that do not contain a

reference validation mechanism or a security kernel. A TCB always refers to an

implemented system for a computer.

As defined in the Trusted Computer System Evaluation Criteria [DOD85], there

are a certain number of architectural requirements that need to be met by the TCB in

order for it to have a high level of assurance (i.e., level B3). The TCSEC requires that the

TCB shall:

• Maintain a domain for its own execution that protects it from external

interference or tampering.

• Maintain process isolation through the provision of distinct address spaces

under its control.

• Be internally structured into well-defined independent modules.

• Structure modules such that the principle of least privilege is enforced.

• Identify the correct functionality of the TCB interface and elements.

• Incorporate significant use of layering, abstraction, and data hiding.

• Employ proper system engineering to minimize complexity and exclude

modules that are not protection critical.

F. CONCLUSION
From our discussion, we have noted that the environment to be protected must be

well understood. After an assessment of the threats to security is reviewed, a system

must then be designed to provide the desired protection. A protection scheme may

include a security kernel that is responsible for enforcing the security policy. This

security kernel is an implementation of an abstract concept called the reference monitor

that controls the accesses to objects. To encompass all of the parts of a trusted operating

18

system on which we depend for the correct enforcement of a security policy, the notion of

a trusted computing base and its security perimeter were introduced. In the next chapter,

the security policy and model, design principles for secure operating systems, the security

kernel concept, and criteria for evaluation and assurance will be reviewed to demonstrate

a proper approach in building a secure operating system. A case study from the Multics

experience will also give examples of previous efforts from which we can learn.

19

III. BUILDING A SECURE OPERATING SYSTEM

A. INTRODUCTION
Ken Thompson [THO84] has commented that, by default, an application should

not be trusted if the end user did not write the code himself. He further stated that no

matter how much a posteriori source-level verification or scrutiny is completed, no

amount will protect the user from untrusted code. He illustrated this point by describing

an instance of an artifice first suggested by Karger and Schell [KAR74]. Thompson

claimed to have introduced an artifice into the C compiler as subverted code. When this

code in the compiler determined that it was compiling the “login” code for the Unix

operating system, it would generate code to accept not only the valid password but also a

fixed password he had previously selected and built into the artifice or trapdoor.

Thompson then planted code in the compiler, which in turn added the code for the two

artifices into the object code each time it recompiled subsequent versions of the compiler,

removing the subverted code from the compiler source code altogether. With this

program, Thompson gave a classic example of how to construct clandestine mechanisms

that can be introduced into the software during the construction phase of the system life

cycle. Previous efforts have demonstrated that it is possible to design, construct, and

maintain a secure operating system throughout its life cycle to keep it free of such

subversive threats. The XTS 200 and XTS 300 [FER92] and GEMSOS [FER95] are

examples of these efforts.

In the Anderson Report [AND72], the steps to build a secure system involved

creating a model or ideal description of a secure system followed by the development of

the security portion of the system or the security kernel, which would later be integrated

with the rest of the system. This task, however, is not as easy as it may sound. The

design of a trusted system is a difficult process, involving the selection of the appropriate

and consistent set of features together with an appropriate degree of assurance that the

features have been assembled and implemented correctly.

20

B. THE SECURITY POLICY AND MODEL
1. The Policy
The Trusted Computer System Evaluation Criteria defined the security policy

control objective as follows: “A statement of intent with regard to control over access to

and dissemination of information, to be known as the security policy must be precisely

defined and implemented for each system that is used to process sensitive information.

The security policy must accurately reflect the laws, regulations, and general policies

from which it is derived” [DOD85]. Hence, the security policy is an informal set of well

defined, consistent, and implementable rules oriented towards an organization and their

policies.

Categories and subcategories of different policies to control the access and

dissemination of information are discussed at length in computer security texts. The

major categories include the mandatory access control policy (MAC), the discretionary

access control policy (DAC), and supporting policies. The subdivisions of categories are

related to the further control of information with respect to secrecy and integrity.

2. The Model

Once the policy has been established, the organization designing the system needs

a formal statement, oriented towards implementation, of what is meant by a secure

system. This policy model provides for a number of advantages for the design, including

(1) completeness by including all relevant assertions, (2) clearness by making the

statement understandable and brief, and (3) correctness by ensuring the statement is

accurate. The model also supports assurance by providing constraints on system

behavior, consistency with no contradictions, and a basis for validation.

After constructing the model, the designer must study the different ways that the

security can be enforced in the system. This will assist the designer in building

confidence that the proposed system will meet its requirements prior to actually creating

the trusted operating system. This high level of confidence is the objective when

building a high assurance system.

21

C. TRUSTED SYSTEM DESIGN ELEMENTS
Prior to discussing the design of a trusted operating system, it would be beneficial

to review the eight design principles that have been provided from the experiences of

others who invested considerable time and energy in system research. These eight were

first discussed by Saltzer and Schroeder [SAL75] and are as follows: economy of

mechanism, fail-safe defaults, complete mediation, open design, separation of privilege,

least privilege, least common mechanism, and psychological acceptability. The economy

of mechanism and least common mechanism are more central to the theme of this thesis,

but a brief discussion of all of these will be given here to preserve continuity and provide

context.

In setting the fail-safe defaults, the designer, acting conservatively in the interest

of the user, needs to identify what items should be accessible rather than those that should

not. Therefore, the default condition should be denial of access.

To obtain complete mediation, every access attempt must be checked. This means

that the mechanism for checking these access attempts needs to be positioned correctly so

it can mediate direct access attempts. It must be designed so that attempts to circumvent

the system will fail.

An open design simply means that the design should not be secret. With the

exception of a few key items like password tables, the source code should be open to

extensive public scrutiny to help provide criticism, new ideas, and independent

confirmation of the security design. In the context of commercial systems, where

protection of intellectual property is of great importance to the vendor, an independent

evaluation with a memorandum of understanding could be established between the

company and the reviewer.

Separation of privilege is common in the commercial business world and makes

good sense here in the design of secure systems. Ideally, access to objects should depend

on more than just an <identification, password> pair; for some systems, this could mean

two person access control where both users need to enter keys, or for others, the user is

required to have an <identification, password> pair accompanied by a token with a

cryptographic key. In this way, if one protection system is defeated (i.e., the password

22

has been cracked or discovered using social engineering), the attacker will not have

complete access. The “Defense in Depth” concept, which combines the capabilities of

people, operations, and security technologies like firewalls, intrusion detection systems,

and public key cryptography to establish multiple layers of protection, could be viewed as

an instantiation of this separation of privilege principle.

Least privilege means that that every program and every user of the system should

operate using the fewest privileges possible. This helps minimize the extent of the

damage caused by a malicious or inadvertent attack.

The notion of psychological acceptability relates to the ease of use issues that all

software engineers contend with in human computer interface design. If the mechanism

for security is not easy to use (i.e., users routinely and automatically apply the protection

mechanisms), then it is more likely that the user would apply them incorrectly or not at

all.

Use of least common mechanism will be discussed later in the Multics case study

to demonstrate the importance of minimizing the amount of mechanism common to more

than one user and depended on by all users, especially in the design of the security kernel.

Since shared mechanisms provide for potential channels of information flow, systems

should employ physical or logical separations to reduce the risk of sharing.

Economy of mechanism, which will be discussed later in Chapter 4, delineates that

the design of a protection system should be simple, small as possible, and

straightforward. This will enable the protection system to be more carefully analyzed,

exhaustively tested, verified, and relied upon with a degree of confidence or assurance --

one of the characteristics of the reference monitor concept that we are striving to achieve.

Keeping these principles in mind can guide the design and contribute to an

implementation that has no security flaws [SAL75]. Together with the proper software

design principles that will be discussed next, the security engineer will have the

appropriate tools to build and maintain a secure system that spans the system’s lifecycle.

23

D. SECURE SOFTWARE DESIGN PRINCIPLES
The system lifecycle that is taken into consideration by the security engineer

includes the following steps: requirements engineering or specification, design,

implementation, testing, documentation, configuration management, system distribution,

and system maintenance [DOD85]. After completing the requirements specification, the

software design needs to follow a systematic approach to identify the major components

of the system, specifying what each component does and establishing the interfaces

between these components. Modularity is one principle of software engineering that

makes this approach possible.

1. Modular Programming
When commenting on proper system design, Gauthier and Pont [GAU70] have

stated that a well-defined segmentation of the project effort ensures system modularity.

This means that each task has its own separate and distinct program module, which is

tested and maintained independently. With no confusion in the intended interface with

other system modules, this approach helps the designer construct well-defined inputs and

outputs at implementation time.

A module that has been well designed encapsulates a function or database and

provides an interface that is always called upon by other modules for access to those

functions or databases. In a sense, the module is a “database” containing entity that holds

different types of information. To access this database, three types of interfaces can be

defined: those that initialize the data, those that modify the data, and those that list the

data. Therefore, when a software engineer decides to build a new system using this

approach, the designer needs to define the problem, define the databases, and then

decompose these into modules. This decomposition supports the understanding, analysis,

and maintenance of the interfaces and can provide a basis for least privilege. As an

added benefit, modular programming uses coding techniques that allow modules to be

written with little to no knowledge of the code in other modules; this allows the modules

to be replaced or reassembled without having any effect on the system as a whole. This

is where modular programming becomes of value as it is applied to the production of

large, complex systems such as operating systems.

24

Modular programming also provides some benefits to the software management

team as illustrated by Parnas [PAR72]. From a managerial standpoint, the development

time in producing a large system is shortened since separate groups of programmers can

be assigned their own modules to work on with little to no communications with the

others, and the interface of each module is well defined from the start. Another benefit is

product flexibility. So long as the interface is stable, the module can undergo drastic

internal changes without affecting the other modules. The last benefit, comprehensibility,

goes hand in hand with the management of complexity that will be discussed later. In

short, it should be possible for anyone to study the complete system one module at a time.

This will help the person analyzing the system reach a better understanding of the system,

its purpose and functionality, and its security. Layered design also aids in this task.

 2. Hierarchical Structuring

To define a hierarchical structure, a partial ordering relation such as “uses” or

“depends on” needs to be defined between the modules or programs [PAR72]. A partial

ordering has the three properties of being 1) reflexive, 2) antisymmetric, and 3) transitive.

For example, one can say that for a particular set of modules {x, y, and z} and the

relation “depends on,” that these three conditions mean respectively that for all x, y, and z

in the set: 1) x “depends on” x, 2) x “depends on” y and y “depends on” x implies x = y,

and 3) x “depends on” y and y “depends on” z implies x “depends on” z.

The managerial, product flexibility, and comprehensibility benefits discussed

earlier could all be obtained if the modules were all on the same level without partial

ordering. However, if the modules are assembled on different levels, a partial ordering

can be introduced giving two additional benefits to the system: 1) parts of the system are

simplified because they use the services of the lower levels and 2) if the upper levels

were cut off, the remaining lower levels are still considered as a usable and useful

product [PAR72]. If the system were designed in such a way that the low level modules

made use of the high level modules, no hierarchical structure would exist, making it very

difficult to remove portions of the system and still have it be usable and useful. Another

issue with this lack of hierarchical design is error state. Since higher layers “depend” on

lower layers in a proper design, the inclusion of lower layers that “depend” on higher

25

layers creates a circular dependency problem that may loop indefinitely if an error is

encountered. For instance, if an error occurs in the lower modules, this error will

propagate into the high modules, which is again propagated to the lower layer. This

creates an error state in which the system may never permit recovery. This concern was

presented in the auditing facility of the VMM security kernel [SEI90].

The concepts of structuring and layering were also discussed by Dijkstra [DIJ68]

who stated, “…the larger the project, the more essential the structuring!” Following the

strict levels of abstraction approach he introduced, the T.H.E. system hierarchy was

broken up into five layers. Since his system was small and straightforward, however,

Dijkstra later commented that his layering decision might very well turn out to be of

modest depth. Schroeder, Clark, and Saltzer [SCH77] in their attempt to rid Multics of

dependency loops also decided to use levels of abstraction in their security kernel design

as a means of reducing complexity and providing precise and understandable

specifications. By making lower layers unaware of higher abstractions, the Multics

kernel designers were able to reduce the total amount of interactions in the system and

thereby reduce the overall complexity. In addition, these levels of abstraction simplified

the correctness argument and kernel debugging since each layer could be tested in

isolation from all higher layers.

3. Information Hiding
A protected subsystem, as defined by Saltzer and Schroeder [SAL75], is a

collection of procedures and data objects that is encapsulated in a domain of its own.

This encapsulation allows the data structure of the protected object to be interpretively

accessed; for example, it does not allow its internal organization to be accessible except

by the internal procedures of the protected subsystem, which may be called only through

specifically designated, domain entry points. Parnas [PAR72] first introduced this idea of

data hiding or information hiding as a design approach where the software is decomposed

into modules that hide design decisions. Therefore, the attention shifts away from the

code used to implement the module and concentrates more on the signature or interface

of the module.

26

Using information hiding in module design, data can only be manipulated through

a simple, high-level, well-defined interface. Consider the example of a file system that

provides services to users and applications in the use of files. Typically, the only way

that a user or application may access files is through the file management system. This

relieves the user or programmer of the necessity of developing special-purpose software

for each application and provides the system with a means of controlling its most

important asset. The implementation details are hidden from the program. This concept

could be applied to a kernel-based architecture, where the description should only include

some of the kernel’s properties, but the rest should remain non-public or secret.

E. THE SECURITY KERNEL
One notion of designing an operating system around a kernel is described by

Lampson [LAM76]. A kernel, by definition, is the part of the operating system that

performs the lowest-level functions. Today, in standard operating system design, the

kernel implements operations such as synchronization, message passing, interprocess

communication, and interrupt handling. In the case of a security kernel, the consistent

application of the reference monitor concept prevents penetration or subversion of

security mechanisms with a high degree of assurance [BRI93].

The reason behind kernel-based architectures is that since a kernel contains only

that part of the system essential to meeting security requirements, it can be small,

compared to the system as a whole, and therefore has a better chance of being correct.

One of the main advantages of the kernel approach is the clear statement of purpose of

the system. Since a kernel is meaningful only with respect to some explicit requirements,

these requirements serve as the statement of purpose of the system. The other main

advantage is the enhanced probability of correct operation. Since the programs that are

critical to the correct operation of the system are isolated in the kernel, a great deal of

attention can be paid to getting this code right, and less attention can be paid to other

system code that may be important but is not critical. The relatively small size of the

kernel significantly improves the chances of applying formal verification techniques

freely to the programs in the kernel, where applying these techniques to the entire system

would be difficult.

27

From the earlier discussions regarding the reference monitor concept, the security

kernel is simply an implementation of the reference validation mechanism. Some of its

functions include creating subjects and objects, performing low-level resource

management (controlling access to system resources), virtualizing the hardware,

enforcing policy on every access request, and protecting itself from tampering. Of the

group of systems that have employed the security kernel concept, the SCOMP system

was the first security kernel of its size and complexity to be formally verified, and the

first to be evaluated against the Trusted Computer System Evaluation Criteria [BEN84].

Other security kernel implementations are found in the XTS [FER92] and GEMSOS

[FER95].

F. EVALUATION
System evaluations need to be based on some set of criteria, and they need to be

done by third party evaluators to remove any bias from the evaluation process. From

Dijkstra’s [DIJ68] experience, there exist only three stages in the building of a new

system: conception to meet the specified requirements, construction to write the code,

and verification to test all relevant states at each hierarchical level to provide for a

flawless system. In the T.H.E.-Multiprogramming System, Dijkstra’s [DIJ68] small team

started at level 0, moving on to the next layer only after they were satisfied that the

previous level had been thoroughly tested. This was done at each layer by forcing the

system into all the different states, and, at the same time, verifying that the system reacted

in accordance with the specification.

Taking from the work of Dijkstra as well as a number of others, evaluation

criteria were formalized to help determine whether systems met a certain degree of

assurance, intended to establish confidence that the systems as a whole are robust against

attack. In reference to the highest level of assurance (i.e., A1), Brinkley and Shell

[BRI93] conjectured that with the amount of verification and validation criteria required

of an Al system, a malicious programmer, who participates in any or all of the design,

construction, distribution, and maintenance phases of the system, could never insert a

trapdoor. The Trusted Computer System Evaluation Criteria (TCSEC) or the Orange

Book and the Common Criteria (CC) are two examples of evaluation criteria that

categorize these levels of assurance from highest to lowest.

28

The TCSEC (Orange Book) was developed by the National Security Agency

(NSA) and adopted in 1985. Addressing secure operating system design, a list of

functional requirements (security policy and accountability) as well as assurance

requirements (assurance and documentation) were carefully developed and categorized

by TCSEC [DOD85]. To specify the amount or level of assurance and functional

requirements met by a system, seven classes (A1, B3, B2, B1, C2, C1, D) were defined as

an evaluation measure, with class A1 meeting all requirements and class D meeting none.

Common to every class except class D, which provides essentially no security, testing

and analysis for obvious flaws that bypass system security is performed, expanding the

rigor and intensity with each increase in level.

In class C, discretionary security protection and controlled access protection are

the requirements for the respective C1 and C2 classes. To provide for discretionary

security (C1), the systems must be capable of controlling access on an individual user

basis. For controlled access (C2), the system must provide individual accountability

through login procedures, auditing, and resource isolation. In addition, storage must be

erased before being reassigned to another process.

With the next level incorporating all the criteria below it, class B systems require

labeled security protection, structured protection, and security domains as per the criteria

for the respective B1, B2, and B3 class systems. Labeled security (B1) is provided by

systems that support the assignment of sensitivity (classification) labels to subjects and

objects, and they must provide mandatory access controls. For structured protection

(B2), the systems must have a TCB based on a clearly defined formal security policy

model, and it must be structured into protection-critical and non-protection-critical

elements. The system also must be subject to more stringent configuration management

and trusted facility management, and must address covert channels and provide a trusted

path between the user and the TCB for login authentication. To meet the criteria of

security domains (B3), the TCB must mediate all accesses, be tamperproof, and be

engineered for analysis and testing. Additionally, the system must incorporate significant

use of layering, abstraction, and information hiding, auditing to signal alerts, and system

recovery procedures.

29

Class A or A1 systems, the highest class that satisfies all the TCSEC criteria,

requires verified protection to provide high assurance against subversion of the security

mechanisms. This criterion stipulates that formal methods of specification and

verification must be used throughout the entire design process.

After a careful review of the assurance requirements, one could note that many of

these reflect the secure system design principles, including (1) system architecture

(hierarchical structuring and information hiding), (2) security testing, (3) formal

verification (use of security models), (4) trusted facility management (support for

separation of operator privileges), (5) configuration management during development

(code reviews before implementation into the baseline product), (6) trusted recovery

(system returns to secure state after power failure), and (7) trusted distribution (hardware

by trusted shippers and software by cryptographic checksums). As illustrated in Figure 5,

these criteria are broken down, giving a total of seven levels of assurance. For each level,

a symbol with an ‘X’ enclosed by a circle signifies that new requirements in a given

criteria class must be satisfied to be in compliance with TCSEC. For instance, a lower

class such as C1 need only satisfy a given subset of the system architecture criterion that

is required of a higher class like C2. If an arrow is observed as an entry, the

corresponding criteria required of the level below is the same for the given level in

question. For example, the system integrity criteria that class C1 systems need to satisfy

are the same for all higher TCSEC levels.

Criteria Class D C1 C2 B1 B2 B3 A1
System Architecture
System Integrity
Security Testing
Design Specification and Verification
Covert Channel Analysis
Trusted Facility Management
Configuration Management
Trusted Recovery
Trusted Distribution

As
su

ra
nc

e

Figure 5. TCSEC Requirements for Assurance.

The Common Criteria [CC99], which was developed by an international

community and adopted in 1998, has a similar approach to assurance requirements that

30

guarantees the hierarchy of requirement sets as displayed by TCSEC. In this evaluation

method, a Protection Profile (PP), defined as a specific requirement set, is built from a

“menu” of assurance requirements to fit the needs of the user. This menu has 58

primitive assurance requirements, which are called assurance components. These are

then grouped into 22 families, which are in turn grouped into six classes, including (1)

configuration management, (2) delivery and operation, (3) development, (4) guidance

documents, (5) life support cycle, and (6) tests. To measure the amount of requirements

met by a system, an evaluated assurance level (EAL1 – EAL7) is assigned. In Figure 6,

the numbers under the EAL columns specify which components of the family are

required. For example, EAL5 requires components 1 and 2 of the ate-cov (the assurance

testing-coverage) family. These requirements serve as a guide for the development,

procurement, and basis of evaluation of information technology with security features.

1 2 3 4 5 6 7
acm_aut 1 1 2 2
acm_cap 1 2 3 4 4 5 5
acm_scp 1 2 3 3 3
ate_cov 1 2 2 2 3 3
ate_dpt 1 1 2 2 3
ate_fun 1 1 1 1 2 2
ate_ind 1 2 2 2 2 2 3

EALAssurance
Classes

Configuration
Management

Tests

Assurance
Families

Figure 6. CC Evaluated Assurance Levels (EAL).

G. ASSURANCE
If an operating system has no assurance of correctness of policy enforcement or

penetration resistance, can a user be held accountable for the unpreventable actions of

software behaving maliciously? A user needs to have confidence that both the policy and

accountability objectives are being met by the system. Hence, to establish that a

protection mechanism is effective and self-protecting, one needs to check the accuracy,

correctness, and completeness of the implementation [SAL75].

The Trusted Computer System Evaluation Criteria defines the assurance control

objective as follows: “Systems that are used to process or handle classified or other

sensitive information must be designed to guarantee correct and accurate interpretation of

31

the security policy and must not distort the intent of that policy. Assurance must be

provided that correct implementation and operation of the policy exists throughout the

system’s lifecycle” [DOD85]. Providing the highest levels of assurance will reveal

intentional flaws (trapdoors) that have been deliberately introduced into the operating

system. Since it is undecidable to conduct searches of arbitrary code for such artifices of

subversion that may be present somewhere in a million lines of code, the construction

process must minimize this possibility to conclude that such artifices do not exist, while

at the same time discovering and correcting accidental errors that could lead to system

compromise.

From all of the topics introduced thus far in this chapter, the main takeaway is that

to establish a level of assurance, the operating system needs to be implemented in such a

way that the user has confidence that it will enforce the security policy, and it needs to

meet the expectations of the user with a certain degree of trust. In the next section, a case

study about the Multics Project will be reviewed to give an example of a successful

attempt at building a secure operating system.

H. THE MULTICS EXPERIENCE
Saltzer and Schroeder [SAL75] have written that contemporary operating systems

have a well-known tendency to be extraordinarily large and complex. Intuitively, this

size and complexity make the process of building a secure system hard due to the

negative nature of security requirements. These requirements, which are necessary and

sufficient, demand that all unauthorized actions, whether accidental or malicious, need to

be blocked (always invoked), the protection mechanisms in the design cannot be

circumvented (tamperproof), and the implementation that reflects the security

specification needs to be proven correct with a certain level of confidence (verifiable).

The Multiplexed Information and Computing Service (Multics) Project team, which

started as a cooperative effort among the Massachusetts Institute of Technology (MIT),

the Bell Telephone Laboratories, and the Computer Department of General Electric later

acquired by Honeywell [COR91], set out to tackle these issues as well as others in the

pursuit of a secure, time-sharing system.

32

Parnas [PAR96] stated that if a group is given the opportunity to start a new

project, their time spent studying previous efforts and identifying the reasons for their

poor structure is likely to pay off in a far better, easier to maintain product. Instead of

reinventing the wheel, it makes more sense to avoid the same mistakes made before and

take heed of those solutions that others have found. Over the last 25 years, the lessons

learned from the Multics experience have propagated throughout academia and

government agencies affiliated with security and have come to be widely acknowledged

as the proper way of building a secure system. To distribute the knowledge gained from

Multics, members of the project team documented the overall experience in a series of

research papers.

While working on the Multics Project at MIT, Schroeder [SCH75] discussed three

primary goals focusing on the reduction of the size and complexity of security-relevant

portions of the Multics system. First, the team wanted to identify a minimum mechanism

that must be correct to guarantee computer enforcement of the desired information access

constraints. Second, they wanted to simplify the structure of that mechanism to make the

verification of its correctness auditable. And third, they wanted to demonstrate by test

implementation that the security kernel developed is capable of supporting all the

functionality required of the Multics system completely and efficiently. Later research

would take a step deeper into the design aspects of the kernel.

Schroeder, Clark, and Saltzer [SAL77] later redefined the design proposals to

again concentrate on size and complexity reductions needed in the security kernel. First,

they wanted to remove protected supervisory functions that did not belong in the security

kernel. Second, they wanted to take advantage of the natural separation afforded by

independent processes to help implement protected functions. And third, they wanted to

use a more structured programming technique to implement the security kernel in a way

that would make it easier to verify. With these goals in mind, the project team set out to

define the proper way to construct a secure operating system.

1. Constructing a Secure System
In the early research phase of Multics, two different approaches were discussed as

a methodology for constructing a secure system [SCH75]. The first that was explored

33

involved designing a formal specification for the desired system security properties

followed by a top-down design and implementation process. To prove the

correspondence between the code implementation and the formal specification, formal

program verification techniques would need to be employed to achieve a level of

confidence comparable to that of a mathematician’s rigorous proof. The step of fitting

the security properties defined in the formal specification to that of the desired real-world

properties (security policy) would be left to human intuition. The second approach was

related to the methodology of “penetrate and patch” that would be conducted by tiger

teams. With the goals of finding, cataloging, and repairing security flaws, this approach

hoped to convince others of the computer security problem, create an understanding of

the type of flaws that exist and can be exploited, and to assist in hardening the available

systems from penetration attempts.

In later research, the team created a multi-pronged approach to assist in the

achievement of the redefined design goals discussed earlier in the introduction (the

removal of functions that did not belong in the kernel, the implementation of protected

functions that take advantage of the natural process separation, and the use of more

structured programming techniques to ease code verification) [SCH77]. This approach

had the following four concurrent processes: (1) use program verification wherever

feasible, (2) assign small, expert teams of programmers to audit portions of the code for

understandability and possible errors, (3) test the system for operational use to observe

the system reliability, and (4) assign a tiger team the task of breaking into the system.

 Once the approach was decided, other design issues needed to be researched for

the proper solution. The amount of common mechanism, which was discussed earlier as

one of secure system design principles, was one of these that demanded much attention.

2. Common Mechanism Risks
To implement any explicit or implicit communication among computations, a

common mechanism is required, such as those found in memory sharing, interprocess

communication, or physical resource sharing. These common mechanisms provide

channels of information flow between different sensitivity levels of the system. For

instance, if operation A at the secret level can influence the value of some set of data

34

items that operation B at the confidential level notices, then the common mechanism that

is said to exist between these two operations allows the conveying of sensitive

information. With this information channel open, operation A may directly write new

information into a specific data item so that operation B can read it, or operation A may

call a procedure at the confidential level that indirectly changes the state of the

procedure’s internals, enabling operation B to take note of this change [SCH75]. If the

intent of the system is to prohibit or constrain unauthorized communication between

processes, then unconstrained access to these common mechanisms represents a risk.

The functions that do incorporate common mechanisms in their implementation

carry a built-in risk, which malicious users could work to their advantage if they can find

an exploitable flaw in the mechanism. As discussed above, these common mechanisms

make it possible for the operation of one user to exert unauthorized observation or

influence over the operations of another. The simplifying conclusion to this problem has

been that if a function does not require any type of outside communication, then its

implementation should not use any common mechanisms.

To avoid the exploitation of such vulnerabilities from the start of system design,

the designers of the system must ensure common mechanisms are used only when

necessary and that each common mechanism has no implementation flaws and no

exploitable design vulnerabilities. Additionally, the mechanism implementation needs to

protect itself from any external tampering. To provide for these requirements, a security

kernel should be the least amount of common mechanism necessary to implement the

sharing of information and resources that are desired in the system, or, more importantly,

only those mechanisms that are necessary and sufficient. But to verify the correctness

and completeness of this implementation, it needs to be understandable, straightforward,

and of good software design.

Parnas [PAR96] commented that a program needs to be well structured, written in

a consistent style, free of errors, and developed in such a way that each component is

simple and organized. Complexity and good engineering was also important for the

designers of Multics. “Reduced size and complexity of security-relevant software is a

prerequisite to performing a convincing logical verification that a system correctly

35

implements the claimed access constraints, no matter what verification techniques are

used. Without such verification of correctness, a system cannot be considered secure”

[SCH75].

3. Complexity and Dependencies
Much of the complexity of a system implementation can arise from the

implementation of only a few of its features. When one realizes that a particular feature

causes complexity, it is time to review the importance of the feature and to see if a slight

variation in its semantics might lead to a simpler implementation. These minor

adjustments or variations in the semantics of the user interface can make major

differences in the complexity of the kernel implementation.

The file system, memory management, and processor management portions of the

supervisor of Multics, the bulk of the supervisor, were organized in six large modules

[SCH77]. The problem that existed with these modules was the complicated cycles of

dependency that were created in the kernel. To eliminate many of these dependency

loops, a complete restructuring of the file system, memory management, and process

management portions of the supervisor was needed. This required that the structure

generated by the “depends on” relation between modules be a partially ordered set as

discussed earlier in the argument first exploited in Dijkstra’s T.H.E. System. Requiring a

loop-free dependency structure allows system correctness to be established one module at

a time. In Dijkstra’s system, the correctness proof was done one layer at a time, which

was simple to complete since T.H.E. was a deterministic system. To get the loops out of

Multics, type extension was found to be the best solution.

Type extension, as defined by Schroeder, Clark, and Saltzer [SCH77], involves

making all the modules of the system act as object managers, categorizing all the ways

one module can depend on another, and organizing the modules in a loop-free

dependency structure. An object manager and the modules it depends on are solely

responsible for maintaining the integrity of the managed objects. Wirth [WIR95]

describes using type extension as a way of providing a system with flexible extensibility,

which guarantees that modules can be added later to the system without requiring

36

changes or recompilation. Therefore, new modules could be added that incorporate new

procedures based on calling existing ones.

In the Multics system, a partition of dependencies into five categories (module

component dependencies, name mapping dependencies, program storage dependencies,

address space dependencies, and module interpreter dependencies) was considered

complete and fairly intuitive for systems designed according to the rationale of type

extension [SCH77]. Studies of Multics later showed that the impact on performance of

the system from the kernel re-design, and related changes, was minimal. Considering the

modules that were redesigned for clarity and size reduction that had to remain in the

kernel, such as memory management and process management, this small performance

impact was especially interesting to members of the project team.

To address the size issue, the Multics team found at the time that the number of

source lines, independent of the language being used, was the most useful and consistent

measure of the kernel size. In Chapter 4, a discussion will demonstrate how archaic

counting lines of code is in comparison to other complexity metrics that have been

introduced recently and are quickly becoming widely used.

With a review completed of the construction approaches, implementation issues,

and complexity and size concerns, a discussion of the Multics security kernel design,

goals, activities, and redesign conclusions will close this lessons learned, case study.

4. Security Kernel Design
Schroeder [SCH75] describes a security kernel as a minimal, protected core of

software whose correct operation is sufficient to guarantee enforcement of the claimed

constraints on access. This is what he considers to be the structural basis for organizing a

secure system. The kernel must contain all those parts of the system that pertain to

meeting the security requirements. Therefore, there is no part of the system outside the

security kernel that can cause the system not to meet its security requirements. Also, the

security kernel can contain only those parts of the system that are necessary to meet the

security requirements. Hence, the security kernel should not contain anything that does

not pertain to the meeting of the security requirements. With this architecture, the

37

security kernel can be small, compared to the system as a whole, and therefore has a

better chance of being correct.

a. Non-kernel Software
Once the security kernel contains only what is necessary and sufficient to

meet the security requirements, correctness of the remaining portions of the system (i.e.,

the non-kernel software) became an issue of debate for Multics. Of these, four categories

were discussed by Schroeder [SCH75], including (1) system-provided programs, (2)

programs constructed by a user, (3) programs borrowed from other users, and (4)

common mechanisms that a group of users sets up to implement some function. It is true

that these applications could still cause undesired release of information, modification of

information, or denial of its use. But, as commented by Schroeder [SCH75], if the kernel

is correct, then these undesired results will not be unauthorized. Therefore, it is apparent

that the only mechanisms that are essential to verify correct are the common mechanisms

of the security kernel.

b. Multics Security Kernel Goals
When work first began in engineering the security kernel for Multics,

Schroeder [SCH75] constructed a list of goals that strictly dealt with the security kernel.

First, the kernel should be sufficiently small, well structured, and easy to understand so

that an expert could verify, with relative ease, its correctness through manual auditing.

Second, since a common mechanism is required if one operation is to influence another,

the kernel should embody all system-provided mechanisms that are common to more than

one operation. And third, to obtain all the mechanisms that should be included in the

security kernel, the security specification should be viewed as a set of constraints on the

interaction of the various operations that occur in a computer system.

Therefore, the plan to produce a security kernel for Multics was viewed as

three different activities, including (1) the removing of non-kernel mechanisms from the

supervisor, (2) the restructuring of the remaining kernel, and (3) the partitioning of the

kernel into multiple protection domains [SCH75].

c. Categories of Security Kernel Activities
The first activity involved taking functions not requiring implementation

as common mechanisms out of the supervisor to be implemented in the user domains of a

38

process. An example of this in Multics was removing file system functions from the

supervisor. The second dealt with the restructuring of the mechanisms that must remain

in the kernel. Such activities can reduce both the size and complexity of the kernel. In

some cases, a piece of the kernel can be eliminated and its function assumed by another

kernel mechanism. An example of this in Multics was the restructuring of the file system

mechanisms that had to remain in the kernel. And the third activity was the partitioning

of the kernel into differently protected functional domains or security policy domains.

This effort helped modularize the job of matching the kernel to the system security

specification.

d. Redefining Key Aspects of the Project
After the work began on the Multics Project, many problems from a

security point-of-view redefined key aspects of the project as well as raised some new

interesting questions [SCH77]. The first problem was with the size of the central

supervisor. For example, the source code was over 54,000 lines of code in length and the

number of programmers that contributed to the project ranged in the area of a hundred or

more. This made the task of conducting an integrity audit very difficult since it was

necessary to inspect and understand every line of code in each and every program. The

second problem was related to the ad hoc security mechanisms provided by the first

design. Since some of these mechanisms, such as access control lists, rings of protection,

and passwords, were not previously defined in any simple, underlying model of security,

the job of auditing the supervisor was considered more difficult than that of the first

problem because of the absence of a specification. Presented with this situation, the

auditor would have no idea what to look for since no model ever existed to verify the

implementation.

To redirect the project into solving these two concerns, the team decided

to redefine the key aspects of the design. First, simplify the supervisor so as to make it

more feasible to audit and understand. And second, provide a set of security functions

that can be described by a simple, more straightforward formal model. The only new

concerns these brought about were the achievability of a successful audit, the usability of

a security function defined by a formal model, and the changes in system performance

when these new aspects were implemented.

39

e. Conclusions of the Kernel Design and Redesign
After the initial design, the redefined aspects of the project concentrated

specifically on the security kernel’s reduction in size and complexity. As stated by

Schroeder, Clark, and Saltzer [SCH77], “The initial projects of removing mechanisms

from the Multics supervisor helped us understand what mechanisms needed to be present

in a security kernel, but they did not help us understand how these pieces should be

organized.” Therefore, they concluded that in order to simplify the security kernel, it was

important to develop an organizational rationale, like type extension as discussed above,

for modularizing the required functions and fitting them into an understandable overall

structure.

From their accumulated work and research on Multics, Schroeder, Clark,

and Saltzer [SCH77] agreed that the primary conclusion of the project was that a kernel

of a general-purpose operating system can be made significantly simpler by first

imposing a clear standard that defines what it should include. This kernel concept, along

with the type extension design discipline, appears to be a viable approach to security in

large-scale systems. And as an added benefit, there does not seem to be a significant

performance loss arising from using simpler more modular designs. Therefore, from

their observations, a secure system need have no performance penalty.

Parnas [PAR96] decided that the most important lesson is “up-front

investment.” In any software that he considered a jewel, the designers had spent obvious

amounts of time thinking about the structure before writing the code. In the case with

Multics, the project spanned over four years and involved the work of several faculty

members, graduate students, and staff members. It proved to be a success by later being

evaluated as a Class B2 [DOD85] high assurance system. But as we will discuss in the

next chapter, it was remarkable that such an ambitious system, which involved so many

sources of complexity, could have ever been built.

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

IV. MANAGING COMPLEXITY IN OPERATING SYSTEM
DESIGN

A. INTRODUCTION
Most of the software we see or buy, in the opinion of Parnas [PAR96], is ugly,

unreliable, hard to change, and certainly not something that Dijkstra would admire. But

why would commercial vendors place such undependable software on the market? Wirth

[WIR95] believes that the reason uncontrolled software growth has been widely accepted

over the last two decades is because customers have trouble distinguishing between

essential features and those that are just nice to have. “Software vendors uncritically

adopt almost any feature that users want,” claims Wirth. “When a system’s power is

measured by the number of features, quantity becomes more important than quality.” To

stay competitive, the vendors add those features the market demands to sell their

products. Can vendors start over again and build an operating system that rids itself of

such functionality, making it less complex, easier to understand, and easier to test to help

provide the level of assurance demanded of a secure operating system evaluated under

the Common Criteria or Orange Book? The Unix operating system, which gathered the

ideas of many previous efforts, is one such example of starting over and developing a

well-structured system.

As part of the Bell Laboratories’ Multics effort, Ken Thompson frustrated with

the complexities of developing a large system under the cooperation of three large

organizations (M.I.T., Bell Labs, GE) decided to start over on his own. His strategy was

clear and straightforward. He wanted to start small and build up the ideas one by one as

he saw how to implement them. Since its advent, Unix has evolved and become

immensely successful as the system of choice for workstations, giving rise to other open

system variants such as Linux, OpenBSD, and FreeBSD and commercial descendents

such as Solaris and OS/X. From a security perspective, however, UNIX has several of its

own flaws and vulnerabilities.

Managing complexity while building a secure operating system requires the

attention of all participants involved in every portion of the system lifecycle. This

chapter discusses complexity from a more abstract point-of-view followed by what

42

complexity exists in software. Testing and the McCabe Cyclomatic Complexity metric

will then be introduced and discussed to give an understanding of how they are coupled

to help give the evaluator and user more confidence that the system behaves according to

the requirements specification.

B. BUILDING SYSTEMS THAT FAIL
From his experience of working on the Compatible Time-Sharing System (CTSS)

and the Multiplexed Information and Computing Service (Multics) system, Corbató

[COR91] commented on the task of building ambitious systems: “It almost goes without

saying that ambitious systems never quite work as expected.” The question to ask when

designing such systems, he pointed out, is not “if something will go wrong, but when it

will go wrong?” With this recurring problem affiliated with complex systems, Corbató

presented his view that when a design team has a multitude of novel issues to contend

with while building a system, mistakes are inevitable. Corbató contributes these mistakes

to what he defines as the properties of ambitious systems. These properties can be

summarized in five points:

• They are often vast and have significant organizational structures going

beyond that of simple replication.

• They are frequently complicated or elaborate and are too much for even a

small group to develop.

• They are pushing the envelope of what people know how to do, and as a result

there is always a level of uncertainty about when completion is possible.

• They often break new ground, offer new services, and soon become

indispensable.

• They invite a flood of improvements and changes by virtue of having opened

up a new domain of usage.

Gathering from his experience, Corbató [COR91] abstracted the major causes of

these properties of ambitious systems into five categories he referenced as the main

sources of complexity, including (1) scale, (2) new design domains, (3) human usage of

computer systems, (4) rapid change, and (5) the frailty of human users.

43

Scale in system design and construction is introduced when a project, which

requires a large number of personnel, requires many levels of management. With this

company hierarchy, communication problems grow and add to the scale of the project as

the size of the design team grows.

New design domains become an issue when software engineers or designers of a

system need to make a large transition in the way they think about solving a given

problem related to the design and construction. This could be related to language

selection, the integrated development environment, or the method of design.

Another complexity that needs to be addressed in system design and construction

arises from human usage of computer systems, where if an individual places total trust in

every computer user, he is vulnerable to the antisocial behavior of any malicious user.

For instance, a complicated trade-off zone is presented to the user of a system when

offered a various arrangement of trust and security mechanisms. When considering

productivity and convenience, for example, most users will select not to use passwords

that are a nuisance to remember.

Rapid change, which is often driven by technology improvements, causes changes

in procedures or usage. These quick modifications in standard operating procedures

could create new vulnerabilities that were not considered in the original design; therefore

this source of complexity also needs to be considered in system design and construction.

Finally, the frailty of human users is considered a source of complexity in system

design and construction since users are forced to deal with the multiplicity of

technologies in modern life, which produce vast changes in their life-styles. Because of

the amount of stress that is created from this over stimulation of inputs, the natural

defense of many is to increasingly depend on others to act as information filters. Hence,

instead of creating a knowledgeable user base that understands the inter-workings of a

computer and the threats to its security, the end result is a population of “ignorant users”

that only demand functionality and ease of use.

C. SOFTWARE COMPLEXITY
Parnas [PAR96] and Wirth [WIR95] have both argued that if a consumer is

offered a system that provides “essential features” or a more useful tool with all the “bells

44

and whistles,” most users will choose the latter. This has driven software vendors in the

market to offer newer and better features, which in many cases offer no additional

functionality, with each new release. “Often,” Parnas notes, “software has grown large

and its structure has degraded because designers have repeatedly modified it to integrate

new systems or add new features.” The disadvantage to this software design approach is

the negative effect the added features have on the system complexity. Since the code is

repeatedly changed and modified to add the previously unanticipated features demanded

by the market, the software design becomes sloppy, slow, and unreliable. Processor

speed and memory size used to be the way out for some vendors to compensate for this

poor design, but considering the computer security problem we face today, the software

needs to be as Wirth refers more “lean,” which will likely turn out to be smaller and

faster.

As opposed to indirect software measures such as project milestone status and

reported system failures, software complexity is one branch of software metrics that is

focused on the direct measurement of software attributes related to module design. As

pointed out by McCabe [MCC96], there are literally hundreds of software complexity

measures, ranging from the simple, such as source lines of code, to the esoteric, such as

the number of variable definition and usage associations. The important criterion for the

selection of these different metrics, however, is the uniformity of application. This is

what McCabe calls the open engineering criterion, where abstract models used to

represent software systems should be as independent as possible of implementation

characteristics such as source code formatting and program language. The objective of

this approach is to set certain complexity standards and interpret the resultant numbers

uniformly across all projects and languages. For instance, McCabe points out that the

number-of-lines-of-code metric does not meet this criterion since it is extremely sensitive

to programming language, coding style, and textual formatting of the source code.

However, his cyclomatic complexity metric, which measures the amount of decision logic

in a source code function, is independent of text formatting and nearly independent of

programming language. Unlike the basic complexity measure of line counting, the

McCabe Complexity is possible since the same fundamental decision structures are

uniformly applied in all function-oriented, programming languages.

45

Thirty years ago, Anderson [AND72] believed that the sheer size of contemporary

operating systems, ranging on the order of 100,000 instructions, created an amount of

complexity that made the static design and implementation virtually impossible to

validate. Moreover, when considering the dynamic behavior of the system, there is no

practical way to check all of the possible control paths to verify that they produce correct

results that are error-free. Since complexity is a common source of error in software,

McCabe [MCC96] decided to use this relationship directly to allocate testing effort.

Leveraging this connection between complexity and error thereby concentrates the testing

effort on the most error-prone software.

D. COMPLEXITY AND TESTING
According to the definition provided by McCabe [MCC96], software testing is the

process of executing software and comparing the observed behavior to the desired

behavior. As commented by C.S. Lewis, “No issue is meaningful unless it can be put to

the test of decisive verification” [PET00]. The major goal of this verification process, as

viewed by McCabe, is the discovery of errors in software. With the absence of such

errors, the secondary goal is to help build confidence in the proper operation of the

software. But what does it mean if a testing process detects no errors? As pointed out by

Dijkstra [DIJ68], “Testing can show the presence, but never the absence of errors in

software.” When verifying and validating an operating system, this makes the problem

of addressing the malicious software threat hard since testing cannot demonstrate the

absence of artifices or trapdoors. Does this mean that the software is high quality or the

testing process is low quality? From McCabe’s observations, many errors are found at

the beginning of the testing process, with the observed error rate decreasing as errors are

fixed. As the rate approaches zero, statistical techniques are used to determine a

reasonable point to stop. In reality, however, this stopping point is usually dictated by a

vendor’s delivery date to the market. This common approach by commercial vendors has

its weaknesses, as argued by McCabe. First, since the testing effort cannot be predicted

in advance, the schedule can expire long before the error rate drops to an acceptable

level. And second, since the statistical model only predicts the estimated error rate for

the underlying test case distribution being used, it may have little or no connection to the

46

likelihood of errors that are manifesting or present when the system is delivered. Other

methodical approaches to software testing may help detect the errors more effectively.

Requirements analysis is another approach discussed by McCabe [MCC96] to

detect the errors in the software. Using this technique, each requirement specification is

converted into a set of test cases. Then, at least one of these test cases within the scope of

each requirement is executed to verify the system behavior. According to McCabe,

however, this procedure does not provide a complete solution. Since the requirements

are written at a much higher level of abstraction than the code that implements it, much

more detail can exist in the latter. Therefore, testing only at the requirements level may

miss many sources of error in the software since only a portion of the implementation is

actually being tested.

Another approach called white box testing uses the software implementation itself

rather than the requirement specifications to guide the testing efforts [MCC96]. This

technique, also called glass box, code-based, or structural testing, focuses on the detailed

design of the software rather than on the functions. This is accomplished by checking

primary statements, paths, and branches for correct execution. Black box testing, in

comparison, hides the contents of the box and focuses only on the inputs, outputs, and

principle functions of the software module. A benefit to the white box approach is that

the entire software implementation is considered throughout the testing effort; however,

if the software does not implement one or more requirements, the testing effort will not

detect the portions of the code that are missing [MCC96]. This convinced McCabe that

in order to account for these concerns, white box and requirements analysis testing would

need to be coupled together to verify the system behavior.

Although there are many effective testing techniques that exist or are being

developed through research, it is also important to design and construct software that can

be effectively tested. By limiting the decision logic of each program module during

development, the amount of complexity will be reduced directly versus the common,

inadequate approach of controlling the number-of-lines-of-code. McCabe [MCC96]

states that the key requirement of white box or structured testing is that all decision

outcomes must be exercised independently during testing. To measure the work

47

associated with this requirement, he introduced his cyclomatic complexity metric for

modules, which is proportional to the number of tests required for a software module.

E. MCCABE CYCLOMATIC COMPLEXITY METRIC
1. Definition and Applications
A straightforward way to assess the complexity of a method is to count the

number of decisions in the flow diagram representation of the diagram. The measure

proposed by McCabe [MCC96] computes a number that represents the amount of

decision logic in a single software module based entirely on the structure of the

software’s control flow graph. The form of these decision paths and their number

strongly relate to the anticipated difficulties encountered when testing and maintaining

the software. Also since the cyclomatic complexity is intended to be independent of

language and language format, this measure provides a single ordinal number that can be

compared to the complexity of any other program. To understand the definition of

cyclomatic complexity, a brief review of some graph theory will be presented.

Using graph theory as a mathematical description, the cyclomatic complexity

represents the same property as the cyclomatic number utilized in a directed graph

[MCC96]. A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E

is a binary relation on V. The set V is called the vertex set of G, and its elements are

called vertices. The set E is called the edge set of G, and its elements are called edges.

Hence, the definition in graph theory of the cyclomatic number, v, comes in the form

v(G) = e – n + 2p, where G indicates that the complexity is a function of the graph, e is

the number of edges, n is the number of nodes, and p is the number of connected entry

and exit nodes in the graph.

Since each software module corresponds to a single function or subroutine in a

typical language, they can be used effectively as a design component via a single entry

and exit point mechanism [MCC96]. Therefore, in a control flow graph describing the

logical structure of software modules, the graph consists of nodes, which represent

computational statements or expressions, and edges, which represent transfer of control

between nodes. Additionally, as explained by McCabe, these program control flow

graphs are connected via a directed “virtual edge,” which associates the exit node to the

48

entry node. From the formula of the cyclomatic number, the existence of one virtual

edge means that p is equal to one, reducing the previous form to v(G) = e – n + 2, which

defines the cyclomatic complexity. Figure 7 illustrates how this cyclomatic complexity is

calculated from the Euclid module, control flow graph. The source code is provided for

amplification.

Number of Nodes: 14

Number of Edges: 15

v(G) = e – n + 2

v(G) = 15 – 14 + 2

Cyclomatic Complexity = 3

2

3

5

6

7

8

4

1

0

9

10

11

12

13

0
1

2
3

4

5

6

7

8

9

10

11

12

13

14

Virtual

Edge

Exit point

Entry Point
Euclid (int m, int n) {
int r;

if (n > m) {

r = m;

m = n;

n = r;

} // end if

r = m % n; /* m modulo n */

while (r != 0) {

m = n;

n = r;

r = m % n; /* m modulo n */

} // end while

return n;

} // end Euclid

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 7. Euclid Module Code With Cyclomatic Complexity [MCC96].

As observed from Figure 7, each possible execution path of a software module

has a corresponding path from the entry to the exit node of the control flow graph of the

module. As defined by McCabe [MCC96], the cyclomatic complexity is the minimum

number of paths that can, in linear combination, generate all possible paths through the

module. With regard to testing, therefore, one only requires the cyclomatic complexity

number of paths to cover all of the relevant edges of each software module. This

resulting measure can be used in development, maintenance, and reengineering situations

to develop estimates of risk, cost, or program stability.

49

As demonstrated by McCabe [MCC96], the correlation that exists between a

module’s cyclomatic complexity and its error frequency can be applied as a strong

indicator of its testability, as well as its understandability and receptiveness to

modification. From a software life-cycle standpoint, McCabe noted that cyclomatic

complexity could be applied in several ways, including (1) code development risk

analysis, (2) change risk analysis in maintenance, (3) test planning, and (4) reengineering.

2. Limiting the Cyclomatic Complexity
The Waterfall Model, described as a sequence of activities in a software lifecycle

that begins with concept exploration and concludes with maintenance and eventual

replacement, is one example of a software lifecycle process. From the model’s various

activities as described by McCabe [MCC96], maintenance turns out to be the most

expensive of all these, with typical estimates ranging from 60% to 80% of the total cost.

In this phase, complexity tends to increase due to the increased number of error

corrections and functional enhancements, which are accomplished more often by adding

code rather than deleting it. McCabe also makes note that these changes also increase the

complexity of each module since it is usually easier to “patch” the logic in an existing

module rather than introducing a new module altogether.

The maintenance phase, however, may not be the only step in the life cycle that is

affected by this increase in complexity. The design and implementation phases could

also create overly complex modules that are error-prone, hard to understand, hard to test,

and hard to modify. Therefore, deliberately limiting complexity at all stages of software

development helps avoid the pitfalls associated with high complexity software. From his

research in software testing and measuring complexity, McCabe [MCC96] explains that

the most effective policy for developers with a solid understanding of both the mechanics

and the intent of the complexity limitation is the following: “For each module, either

limit cyclomatic complexity to 10…or provide a written explanation of why the limit was

exceeded.” An organization can pick a complexity limit greater than 10, but only if (1) it

is sure it knows what it is doing, and (2) it is willing to devote the additional design

analysis and testing effort required by the more complex modules. A chart of threshold

values is provided in Figure 8 on the next page to serve as a guideline for developers.

The original limit of 10, as proposed by McCabe [MCC96], has significant supporting

50

evidence, but limits as high as 15 have been used successfully as well. Limits greater

than 10 should be reserved for projects that have several operational advantages over

typical projects. Some of these advantages include experienced staff, formal design, a

modern programming language, structured programming, code walkthroughs, and a

comprehensive test plan.

Cyclomatic Complexity Risk Evaluation

1-10 a simple program, without much risk

11-20 more complex, moderate risk

21-50 complex, high risk program

greater than 50 untestable program (very high risk)

Figure 8. Threshold Values.

An attempt to limit complexity affects the allocation of code among individual

software modules. For instance, limiting the amount of code in any one module might

tend to create more modules for the same application. From a software engineering

standpoint, however, the usual factors to consider when allocating code among modules

are the cohesion and coupling principles of structured design as discussed in Chapter 3.

This means that the ideal module needs to perform a single conceptual function (high

cohesion), and do so in a self-contained manner without interacting with other modules

except to use them as subroutines (low coupling). Thus, complexity limitation attempts

to quantify an “except where doing so would render a module too complex to understand,

test, or maintain” clause to the structure design principles [MCC96].

Other archaic rationale for limiting complexity, like reducing a software module

to one page to make it more manageable, have no direct connection to a module’s actual

complexity and should not be used as a measurement of such [MCC96]. For instance,

one control flow graph may have 282 lines of code with a cyclomatic complexity of one;

whereby a second flow graph represented by a 30-line module may have a cyclomatic

complexity of 28. As this example makes clear, there is no consistent relationship

51

between the number-of-lines-of-code and complexity. Although the number-of-lines-of-

code is an important size measure, it is still considered a crude measurement for

complexity.

With a review of its definition and applications completed, some practical and

simplified cyclomatic complexity calculations will be introduced to aid in module design

and implementation.

3. Simplified Complexity Calculations
McCabe [MCC96] explains two ways to manually calculate the cyclomatic

complexity of a program: (1) counting the decision predicates and (2) counting the flow

graph regions.

On a control-flow graph, a binary decision predicate (i.e. “yes” or “no”) appears

as a node with exactly two edges flowing out of it. Starting with one and adding the

number of such nodes yields the cyclomatic complexity. For multi-way decisions (i.e.

switch or case statements), the number added is one less than the number of edges out of

the decision node.

Count the Decisions:

1. Always start with
one unit of complexity.

2. Binary:
1 + 1 + 1 = 3

3. Multiway:
1 Four-Way = 3

Cyclomatic Complexity:
3 + 3 + 1 = 7

2 3

5
6 7

8

4

1

0

9

10

11 12

17

Binary Desions

Exit point

Entry Point

13 14

15

16

Four-Way
Desion

Figure 9. Binary and Multi-way Decisions [MCC96].

52

As illustrated in Figure 9 depicting a flow graph with three binary decisions and

one multi-way decision, we always start with one unit of complexity, each binary

decision then contributes one unit of complexity for a total of three, and the four-way

decision node adds three units for a cyclomatic complexity equal to seven. By counting

from the source code, this often provides the easiest way to measure and control

complexity during development, since complexity is measured before the module is

actually complete. The important thing to remember when calculating complexity from

source code, however, is to be consistent with the interpretation of language constructs in

the flow graph. For instance, “if” and “while” conditional statements should add a value

of one to the complexity, yet boolean operators within a conditional statement such as

“and” and “or” should add nothing.

Count the Regions:

1. Always start with
the infinite region.

2. Proceed with the other
internal regions.

Cyclomatic
Complexity = 7

2 3

5
6 7

8

4

1

0

9

10

11 12

17Exit point

Entry Point

13 14

15

16

1

5 6

2

7

4

3

Figure 10. Planar Control Flow Graph With Regions [MCC96].

 When no edges cross, the control flow graph is defined as planar. As depicted in

Figure 10, this planar graph can then be divided into R regions, including the infinite

region outside the graph. In this scenario, the simplified formula for cyclomatic

complexity is just R. Euler’s Formula, given as V – E + F = 2, where V is the number of

53

vertices, E is the number of edges, and F is the number of faces, can be applied to any

three-dimensional shape. For instance, a tetrahedron has V = 4 vertices, E = 6 edges, and

F = 4 faces, yielding 4 – 6 + 4 = 2. As described by McCabe [MCC96], using R (the

number of regions) to represent F (the number of faces), Euler’s Formula can be

rewritten for application to all planar graphs n – e + R = 2. Rearranging this formula

gives the form R = e – n + 2, which matches the previous definition of the cyclomatic

complexity. Thus, for a planar flow graph, counting regions gives a quick visual method

for determining complexity. Using the flow graph in Figure 10 as an example, we start

by counting the infinite region outside of the graph followed by counting the total number

of internal regions, giving a cyclomatic complexity equal to seven. Since the control

flow graphs in Figures 9 and 10 are identical, the method of counting the regions agrees

with the method of counting the decision predicates used in the previous example.

 Although the cyclomatic complexity can be calculated manually for small

program suites, automated tools are preferable for most operational environments.

4. Automated Tool
Automated tools are the most efficient and reliable way to determine complexity.

In a matter of minutes, complexity can be determined for hundreds of modules spanning

thousands of lines of code. McCabe [MCC96], however, notes that in order for

automated graphing and complexity calculation to be possible, the technology needs to be

language-sensitive. Therefore, there must be a front-end source parser for each language,

with variants for dialectic differences. This type of technology exists today and will be

described in Chapter 5 with a description of the Imagix4D reverse engineering and

documentation tool.

Another example of this technology is a plug-in, which calculates the cyclomatic

complexity metric for Pascal source code, designed by Derrick [DER97] for the Code

Warrior integrated development environment (IDE). The score that the program provides

is the number of decision points gathered from the number of conditional statements (i.e.,

if, while, repeat, for, and, or, and case statements) in a routine plus one. Figure 11 shows

the design and implementation scores that a programmer could use to limit complexity

using the Code Warrior, cyclomatic complexity plug-in.

54

Scores Design Plug-in Implementation

8 - 10 Fairly simple Gives user a note

11 - 19 Need to start thinking about simplifying Gives user a warning

>= 20 Need to simplify the routine Gives user a error

Figure 11. Complexity Plug-in Design and Implementation Scores.

The tools that are available for studying complexity are useful in software

development, but McCabe [MCC96] makes an important observation regarding the use of

any of these methods after the design and implementation phases are already complete:

“The feedback from an automated tool may come too late for effective development of

new software. Once the code for a software module (or file, or subsystem) is finished

and processed by automated tools, reworking it to reduce complexity is more costly and

error-prone than developing the module with complexity in mind from the outset.”

Therefore, instead of pushing complexity-related issues to later phases of the software

life cycle like the maintenance phase, manual and automated techniques as discussed in

this chapter need to be applied for complexity analysis to help design and build easy to

understand software.

Wirth [WIR95] states that reducing complexity and size must be the goal in every

step of the design, including system specification, design, and detailed programming.

This would bring one to logically infer that if a system is already constructed, it may be

too late to go back and try to fix the complexity problems. Would it benefit the vendor

and its design team to start again with a new software project that confirms and controls

complexity throughout all of its development? After a discussion of the Imagix4D’s

capabilities, an experiment that compares the complexity of different operating systems

will help provide the answer to this question.

55

V. IMAGIX 4D REVERSE ENGINEERING TOOL

A. INTRODUCTION
There are several ways to calculate complexity of applications and operating

systems in practice, ranging from counting decision predicates by hand, as discussed in

the last chapter, to using a tool that performs the calculations in an automated, more

error-free manner. When searching for a tool that specifically automates cyclomatic

complexity calculations, Imagix 4D is the ideal application. From its description, Imagix

4D is a reverse engineering and documentation tool for legacy C and C++ software. As

part of its wide functionality, the tool can be used on any level to rapidly check or

systematically study software, including architectural details, functional dependencies,

control structures, and data usage. By automating the browsing and analysis of the code,

Imagix 4D speeds the comprehension of programs that are large, complex, or unfamiliar.

The following chapter will give an overview of the Imagix 4D tool starting with a

description of its underlying database model, the entity-relationship-attribute symbols

utilized by the database, the views and displays that present the information stored in the

database, and the various modes that are available to browse, explore, and analyze the

software code. Throughout this synopsis, screen shots will demonstrate the tool’s

functionality by analyzing a simple C++ program called “Vehicle Watch,” which was

developed as the final project in a beginner’s programming class. This program tracks

vehicle information such as speed and heading. The next chapter will present an analysis

of other software that is not as easy to understand – operating system source code. From

this study, we plan to show a complexity comparison between an open source, general

operating system like Linux and a commercially available, embedded operating system

like Talisker.

B. DATA MODEL
The underlying database, which is employed by the Imagix software, uses an

entity-relationship data model. The symbols (entities) in the program code, their

dependencies to other symbols (relationships), and specific information about any of the

symbols (attributes) constitute the most natural way of handling and presenting the data

about the program being analyzed.

56

When parsing the source code, all of the entities, attributes, and relationships are

collected and updated in the database. The Imagix 4D database recognizes a wide range

of symbol types, including file directories, program files (binary, C, C++, executable,

header, and library), classes, functions, macros, variables, and data types. Figure 12,

which depicts the “Set View” options for Imagix 4D’s Graph window, illustrates the

various types of symbols available. The purpose and functionality of the Graph window

will be explained in the next section.

Figure 12. Graph Window - Set View Options.

Associated with each of these symbols is a set of relationships to other symbols. A wide

variety of relationship types are collected and updated, including (1) function “calls”

function, (2) file “declares” symbol, (3) file “contains” symbol, (4) variable “has type”

data type, (5) file1 “includes” file2, (6) functions “reads” variable, and (7) function “sets”

variable relations. Figure 12 also shows a list of these relationships that are possible to

model in Imagix 4D.

For each symbol in the database, the reverse engineering tool collects a number of

attributes as well. Of interest are the function metric attributes, which are illustrated in

Figure 13 showing the different attributes available from the “List Options” menu. Of

the metric options, “callers” is defined as the number of other functions that call a

particular function. “Complexity” is based on the cyclomatic complexity metric as

defined by McCabe. The total number-of-lines in a function is given by the “lines”

metric, while the “LOC” metric is the number-of-lines-of-code containing tokens in the

57

function. And concerning the length of a file, the number-of-lines containing comments

are given by the “LOCmmts” metric. To generate profile data, a “frequency” metric

gives the number of times a function was called, a “coverage” metric gives the

percentage of blocks of code that were executed, and a “time” metric gives the time spent

executing the function. Besides functional metrics, other attributes such as file size and

modification date can also be included in the Imagix 4D database.

Figure 13. List Options Menu for Imagix 4D Database.

Information from the database is used to generate the various displays as well as

support Imagix’s knowledge-based querying.

C. VIEWS AND DISPLAY WINDOWS
The display windows are the central focus of Imagix 4D’s user interface. Taking

advantages of visualization technologies to convey information from Imagix 4D’s

comprehensive database, these windows enable a user to achieve a fast and accurate

understanding of the software. Since the views and displays present several different

perspectives of the program simultaneously, their complementary nature enables a user to

grasp the inherent design of the software.

1. Graph Window
The central window for displaying information is the Graph window. The

window shows a group of symbols (such as particular functions, classes, variables, and/or

58

types) in the software, and how they relate to each other. For a given symbol, one is able

to see at a glance how it interacts with other symbols.

Figure 14. Graph Window and List Window.

The Graph window helps a user visualize and understand the software by

pictorially representing the symbol and relationship data contained in the Imagix 4D

database. In the view presented in Figure 14, functions are displayed as indicated by the

selected radio button shown at the bottom left hand corner of the Graph window. This

example shows the hierarchy of calls between functions, which will be utilized in our

comparative analysis later in Chapter 6. The setting and reading of variables can also be

visualized by selecting the appropriate checkbox.

In the Graph window and the Graph Symbols Key (shown in Figure 15), all the

lines drawn between symbols representing the relationships have arrowheads. These

indicate the direction of the “dependency” as directed graphs as discussed in the previous

59

chapter. For instance, when a function is said to call another function, an arrow from the

calling function to the called function so indicates. This dependency direction is also

given by the layout of the graph. In general, the symbols at the top of the graph tend to

have dependencies upon the symbols lower in the graph. There are times, however,

when a user will find a traditional 2D layout more appropriate for the data being

observed. This 2D layout, which can be selected at the bottom of the Graph window as

illustrated in Figure 14, is similar to the 3D view except that the dependencies tend to be

displayed left to right, rather than from top to bottom.

Figure 15. Graph Symbols Key.

One option available with the 2D view is the cross-reference layout, also shown

as an option in the Graph window of Figure 14. When this option is checked, only the

relationships that have a direct dependency with a pre-selected symbol are drawn, while

suppressing all other relationships from the graph. For instance, if “main” were selected

by clicking on its function symbol in the graph of Figure 14, it would become the center

of focus when the cross-reference layout is selected in the 2D view. In the resulting

display, symbols that directly depend on “main” will have arrows drawn into the selected

symbol, appearing to the left of “main,” while those that “main” directly depends on will

have arrows drawn out of “main,” appearing to the right. In this example, “main” has no

“into” dependencies; therefore, it would only have arrows drawn in the “out of” direction,

demonstrating what functions and variables it directly depends on.

60

2. Graph Symbols Key
The Graph Symbols Key, similar to the legend of a map, is a useful tool for

keeping track of the symbols and the relationships that can be displayed in the current

view. As illustrated in Figure 15, the key uses shapes and colors to indicate these

different types. For instance, blue cubes are used for functions, and green pyramids

represent data variables. Color is also used to indicate the type of relationship between

two symbols. For example, the arrow representing a function calling another function is

drawn in red, a function reading a variable appears as light purple, and a function that is

setting a particular variable is shown in aquamarine.

3. List Window
While the Graph window shows the symbols and their relationships, the List

window, as shown on the right side of Figure 14, complements the Graph window by

displaying various characteristics about the symbols themselves. In particular, a user can

utilize the List window to understand the context of a symbol and examine its attributes.

For example, since the Imagix 4D database tracks where each symbol is declared, a user

can use the List window to examine the hierarchy of containers. Hence, it can be

observed in Figure 14 that variable “car” used in function “add” is defined in file

“proj5.cpp” located in directory “test”. The “contains” adjust buttons below the List

window enables one to control how many levels of containers are shown. Other symbol

attributes like the number-of-lines-of-code in a function and its complexity, the scope of a

certain variable, and the date a file was last modified can also be presented in the List

window by selecting the “attr” checkbox located in the bottom right of the window.

4. File and Class Browsers
The Imagix 4D browsers provide information about files or classes from different

perspectives. As shown in Figure 16, which depicts a typical file browser, the “Index”

panel contains a list of all the files that have been loaded into the database, including

source files and header files. The “Members” panel contains a listing of all the members

defined in the current file as well as those that are only declared. These can be presented

in the order they appear in the file, by name, or by type. A user of the application can

also use the browser filter capabilities to limit the list to just those members of particular

types, scopes, and origins. Finally, the “Relationships” panel shows how the current file

61

is related to other files in the database. During the examination of a file, a user may want

to know what other files may include this one, or what other files have functions that call

members of this file. As shown in Figure 16 with the “includes” relationship, a user can

select other types that are available, including (1) calls, (2) sets, (3) reads, and (4) has

type.

Figure 16. File Browser.

5. Flow Chart
The Flow Chart, as illustrated in Figure 17, shows the internal flow of control

within a function. In this example, the decision logic of the “main” function is presented.

For other more complex functions, which may consist of hundreds of lines-of-code, this

capability can help the user visualize the internal logic of the routine. As also shown in

Figure 17, the Flow Chart Symbols that can be selected help explain the symbols used in

the control flow diagram. For instance, diamonds represent decision points; in-line

blocks of code are shown as squares; and lines that connect the symbols show control

flow.

An additional feature that helps the user see where a specific line of code fits in

the overall logic flow of a function is the Flow Chart’s link to the File Editor. When the

user clicks on a specific symbol, the cursor in the File Editor goes to that location in the

source code. Likewise, clicking on the source code causes the matching symbol in the

Flow Chart to be highlighted in red. By being able to see the source code in combination

62

with the logic of the function, one is able to understand and modify the function much

more quickly and accurately.

Figure 17. Flow Chart and Symbols.

6. File Editor
Imagix 4D’s built-in file editor enables the user to achieve a better understanding

of a program while examining and modifying its source code. An example of this

capability is shown in Figure 18 where the “main” function is listed in its entirety.

To visually improve the level of understanding, color-coding is employed to

distinguish between comments and actual code. This color-coding is also extended to

symbols to aid in determining how they are defined and used in the code. To make

browsing of the code more straightforward, hypertext-like navigation based on the

information contained in the underlying database is achieved by tightly linking the file

editor to other displays. For instance, by double-clicking on a colored symbol, the file

editor immediately browses to the file and line number where that symbol is defined.

This is also possible from the Graph window, the List window, the Browsers, the Flow

Chart or a given Report that can be generated by the application.

63

Figure 18. File Editor.

Another form of navigation, which cycles through all of the locations where a

symbol is used, is achieved with the “Next” and “Prev” reference buttons located on the

icon bar of the File Editor as shown in Figure 18. With these tools, the user avoids

64

having to spend the time and effort trying to remember where things are located and can

focus instead on the understanding and possible modification of the source code.

7. Reports
Leveraging the information in its database, Imagix 4D can generate

comprehensive reports and documentation about the software as shown in Figure 19. In

this typical report, all of the function information is listed in order of its complexity.

Other options for these information reports about functions include organizing the

information: by name, by LOC, by lines, and by callers. Additionally, file and class

summary as well as file information reports can be generated to include similar attributes

as seen in the function report.

Figure 19. Typical Report – Function Information.

D. MODES OF OPERATION
To ease the task of program understanding, Imagix 4D operates in four different

modes, including (1) browse, (2) explore, (3) analyze, and (4) control flow modes.

Browse mode helps the user to quickly navigate through the code to examine the key

relationships between functions, classes, variables, and types. The explore mode enables

the systematic study of the software on any level from its high level architecture to the

details of its build, procedural, data, and module dependencies. The analyze mode

examines the quantitative characteristics of the software such as giving a visual indication

of the complexity metric level of the design structure using predefined threshold values.

65

Finally, the control flow mode provides insight into the sequence and conditionality of

function calls and variable usage.

All of the view and display functionality discussed thus far are all available in the

four modes of operation. In the presentation that follows, additional capabilities affiliated

with each mode in particular will be discussed for understanding and continuity.

1. Browsing the Source Code
When browsing the source code, the only other functionality permitted is the

querying of the database using the “Find Query” and the “Grep Query” commands

provided. When a “Find” is executed, the display windows focus on the results of the

query.

Figure 20. Find Query in Browse Mode.

The query, as illustrated in Figure 20, consists of a specific “Name,” a

“Program_Element” type, and a “Function” subtype. “Files” is a second type that may be

chosen where “Binary_File,” “Directory,” and “Source File” are some of its subtypes.

Other “Program_Element” subtypes include the set {Class, Macro, Type, and Variable}.

If a user executes the find query shown in Figure 20, the “main” function symbols in

both the graph and list windows (illustrated in Figure 14) would become highlighted after

the Imagix 4D tool searched its database for matches to the query.

The results of a “Grep” query, as illustrated in Figure 21, are listed in the search

result window of the “Grep Tool” function available in all modes of Imagix 4D. In Unix,

if “grep foo bar” was entered at the command-line, the system would return all the lines

that contain a string matching the expression “foo” in the file “bar.” In Imagix 4D, this

function enables a user to easily jump to the files where the “greped” strings are located.

66

After a grep operation is performed, the user can display these returned strings by

selecting the “Grep” option available in the graph window as illustrated in Figure 14.

This will result in a display of all the returned strings organized by location where they

are declared. This is accomplished by listing them under a corresponding function,

module, or file symbol. This list can be used as a basis for browsing to the actual

occurrences of the string. In Figure 21, the tool is used to find all the occurrences of the

expression “memory management” in the Linux operating system.

Figure 21. Grep Query in All Modes.

2. Exploration and Analysis of the Source Code
In explore and analyze modes, an additional capability available to the user is the

tracing of software hierarchies in the source code. For instance, since the arrows on the

relationship lines indicate the direction of the dependencies, a user can trace the hierarchy

of dependencies quickly and simply by using the “Traverse Up” and “Traverse Down”

functions available in these modes. These commands can also help find circular

dependencies in the software hierarchies, as will be later demonstrated in Chapter 6.

Extending the database querying capabilities discussed earlier in the browse

mode, the “Find” command in explore and analyze modes can quickly identify all

symbols that meet a given criteria a user specifies by using the additional “Options…”

menu item not available in browse mode. As shown in Figure 22, for instance, a user can

base a “Find” query on certain attributes related to the symbol’s name, type, scope, file

location, and quantitative characteristics such as lines-of-code or complexity. This

command will determine what symbols meet the criteria, and where they exist within the

context of the current view.

67

Figure 22. Find Query Options in Explore and Analyze Modes.

Another feature of explore and analyze modes is the capability to control and

focus the content of inquiries into the source code to try and find more detailed

information. For example, once a user has identified information of interest using the

“Traverse”, “Find”, and “Grep” commands, he may want to remove unnecessary

information and focus his view. To assist the user in accomplishing this simplification,

data filtering functions (i.e., the “Isolate” function) are available. A complementary

approach to this is to start with an overly simple view and add pertinent information (i.e.,

the “Add” function). Using either approach, the user can decide to focus his view in a

way that follows his natural train of thought. In Figure 23, the menu for the “Add”

command illustrates that symbols with a given name or type can be added “anywhere” in

the graph; or relative to the symbol specified, symbols can be added in full or incremental

steps in the up or down direction of the system hierarchy.

68

Figure 23. Add Function in Explore and Analyze Modes.

“Group” commands can also give the user a way to condense information without

removing it. By collapsing a number of symbols together, for example, the information

about all the relationships to the rest of the software can still be retained. This is useful

when viewing software as a number of subsystems. When examining the sub-system

interfaces, the user can see how one particular sub-tree interacts with the rest of the

software without being burdened by the details of the sub-tree.

The views available in the analyze mode also provide insight into software

metrics. When selecting the analyze mode, the user has a choice to view the source graph

in relation to complexity, lines, LOC, or callers. In Figure 24, which shows the “main”

function as the root, the symbols are color-coded to indicate whether they have a high,

medium, or low value in relation to given complexity levels. By having a visual

indication of the metric level as the user examines the design structure, he is able to more

quickly identify areas that require attention for inspection, redesign, and modification. In

this example, red indicates functions with the highest complexity and the least complex

functions are green. In Figure 25, which depicts the complexity thresholds setting, a user

is able to change the threshold values to meet his organization’s design policy.

69

Figure 24. Analyze Mode - Software Complexity Analysis.

Figure 25. Threshold Complexity Level Setting.

3. Control Flow Analysis of the Source Code
There may be times when it is important to understand the sequence and

conditionality of the function calls and variables usage in the source code. For this more

detailed control flow analysis, Imagix 4D provides the control flow mode.

70

Figure 26. Control Flow Analysis.

For some symbols, their usage is the same in both the control flow mode and the

standard graph. In both, blue, square-shaped symbols are associated with functions; and

the symbols for variables are green and have sloped sides. The functions, however, are

larger and contain additional information. From Figure 26, which depicts the “main”

function and its interaction with functions and variables, it is observed that the functions

enclose source code snippets with blue and green rectangles along their right edge. The

snippets reflect the line of source code where the function call or variable usage occurs,

the yellow text indicates that the source code was part of a decision, the white text is used

for source code from a block of in-line code, and the blue and green rectangles along the

right edge indicate whether a function is being called or a variable is being accessed. By

71

studying the control flow graph, one is able to learn about the order and conditions under

which functions are called and variables are set and read.

D. CONCLUSION
With the goal of constructing source code that is straightforward and

understandable, an automated tool such as Imagix 4D can be a valuable aid to help each

programmer of the project team have a thorough comprehension of the software, thereby

providing source code that is less complex, less error-prone, and easier to test.

With a review of Imagix 4D’s capabilities completed, we will now apply its

functionality to analyze the source code of the Linux, OpenBSD, and Talisker operating

systems. In this context, we plan to observe the differences in complexity demonstrated

by each of these systems.

72

THIS PAGE INTENTIONALLY LEFT BLANK

73

VI. COMPLEXITY ANALYSIS OF LINUX, OPENBSD, AND
TALISKER

A. INTRODUCTION
As this chapter will demonstrate, all three operational modes of the Imagix 4D

tool (Browse, Explore, and Analyze) were used to study many different attributes of the

Linux, OpenBSD, and Talisker operating systems. However, before discussing the basis

of the analysis (the source code used, the data gathered using the Imagix 4D tool, and the

final results from the comparative analysis) a brief background history of each operating

system will be given to provide an overview of each system’s origin, design goals or

development process, and release distribution history. The experiment that will follow

examines each operating system, its kernel, and its schedule module using the tool’s

various views, displays, and reports. After gathering enough data for analysis, the design

and implementation of the three operating systems will then be compared in the context

of the design principles previously presented, including hierarchical structuring, modular

design, information hiding, the McCabe Cyclomatic Complexity, and the number–of-

lines-of-code complexity metric.

B. BACKGROUND
1. Linux
Linux was initially developed in 1991 as an operating system for IBM-compatible

personal computers [BOV01]. Linus Torvalds, the creator of the operating system and

current owner of the Linux registered trademark, keeps the operating system up-to-date

with various hardware developments and coordinates the activity of hundreds of other

Linux developers around the world. As a result of this cooperation, developers have

worked to make Linux available on other architectures, including Alpha, SPARC,

Motorola MC680x0, PowerPC, and IBM System/390. An appealing benefit of Linux is

the fact that it is an open source system. Under the GNU Public License, the source code

is open and available for anyone to study. If the Linux kernel or its core utilities are

modified or redistributed, the license stipulates that these changes must be released as

open source. This has spawned many different activities in the operating system’s

continuous evolution.

74

One example of an activity shared by volunteer, non-commercial developers is the

design and implementation of the Linux kernel source code, which is currently

maintained at www.kernel.org. This web site and dozens of others are devoted to

facilitating the simultaneous development of Linux. Of the versions presently available,

each has two separate code trees to differentiate between a stable version and a

development version. A simple numbering scheme is used to distinguish these kernel

versions. The first number is the version number, the second number denotes whether it

is a stable version (even) or development version (odd), and the third is the release

number [BOV01]. For example, Linux 2.4.17, which will be used in the complexity

analysis later in this chapter, is interpreted as Linux Version 2 - Stable Kernel 4 - Release

17.

A distribution of Linux provides a stable kernel version along with other standard

utilities that the distribution creator feels is appropriate. Caldera, Debian, Slackware,

TurboLinux, Red Hat, and SuSE are all examples of these distributions. Others include

Corel, Mandrake, and variations on existing distributions such as Trustix, which is a pre-

hardened version of Red Hat.

2. OpenBSD
In 1976, the Computer Science Research Group (CSRG) of the University of

California in Berkley, CA started releasing an open source operating system called the

Berkley Software Distribution or BSD [STA98]. This operating system was an open

source derivative of AT&T’s Research UNIX operating system, which is also the

ancestor of the modern UNIX System V. Using the work initiated by CSRG, other

projects like NetBSD and FreeBSD were created later with particular design goals

specified. This caused the code base of the original version diverge to the point that the

code of the multiple systems could no longer be merged. In 1996, another project called

OpenBSD split off from NetBSD, making it the third version of BSD available today

[STA98].

From a development standpoint, no one person or corporation owns BSD. It is

created and distributed by a community of highly technical and committed contributors

from all over the world. The BSD kernels are developed and updated following the open

source development model [LEH99]. Each project maintains a publicly accessible source

http://www.kernel.org/

75

tree under the Current Versions System (CVS), which contains all source files for the

project, including documentation and other incidental files. CVS allows users to check

out and extract copies of any desired version of the system available. The developers

who contribute to the improvements of the OpenBSD project are divided into two

categories, the contributors and the committers [LEH99].

Contributors write code or documentation. They are not permitted to commit or

add code directly to the source tree. In order for their code to be included in the system,

it must be reviewed and checked by a registered developer, known as a committer.

Committers are developers with write access to the source tree. In order to

become a committer, an individual must show ability in the area in which he is active. It

is at the individual committer's discretion whether he should consult with other

committers prior to adding changes to the source tree.

Just like Linux, OpenBSD has a nomenclature for distinguishing the different

versions of the operating system in the source tree. For instance, all new developments

of the system are submitted into a branch called CURRENT. Unlike Linux, OpenBSD

does not assign a number to this version (i.e., "OpenBSD-CURRENT"). At regular

intervals, between two and four times a year, this branch of the OpenBSD project

provides a new RELEASE version of the system, which is available on CD-ROM and via

free download from mirrored ftp sites. The version that is released is intended for end

users and is the normal stable version of the operating system. The version that will be

used in the complexity analysis is “OpenBSD 2.9-RELEASE.” As flaws are found in a

RELEASE version, they are repaired and then added to the CVS tree.

In contrast to the numerous Linux distributions, there are only three open source

BSDs: FreeBSD, NetBSD, and OpenBSD. Of these three, the design goals of OpenBSD

are security and code purity. The project team meets these goals by using a combination

of open source sharing and rigorous code reviews. Their objective is to create a system

that is demonstrably correct, making it the choice of security-conscious organizations

such as banks, stock exchanges, and US Government departments.

76

3. Talisker
The first device using Windows CE was the handheld PC 1.0, which was shipped

in 1996 with the Windows CE 1.0 version (HAL01). Afterwards, new releases of the

Windows CE operating system were given codenames based on tree types, including

Alder (Windows CE versions 2.0/2.1), Birch (Windows CE Versions 2.11/2.12), and

Cedar (Windows CE 3.0). However, the third generation of Windows CE has since

separated from this tradition given the name Talisker, presumably after a Scotch whisky.

At the time of Version 1.0, no tools were publicly available to allow developers to

build their own custom-embedded devices using Windows CE. However, Microsoft did

ship a set of tools to the original equipment manufacturers (OEM) of hardware like Casio

and Compaq, who were currently building the Handheld PC 1.0. These tools were

known as the OEM Adaptation Kit, or “OAK.” The tools developed to help build the

second generation of Windows CE, Versions 2.0-3.0, were named after the tools that

could cut down a respective type of tree. For example, Axe was used for Adler, Buzzsaw

for Birch, and Chainsaw for Cedar. But with the third generation, the operating systems

and tools were no longer given separate names; hence, the combination is called Talisker.

Windows CE is an operating system built from scratch and specifically designed

for the needs of embedded systems [HAL01]. Contrary to popular belief, it is not based

on the Windows NT design nor is it compatible with NT applications. From the outset,

the project had a number of design goals, including (1) building an OS suitable for small

systems, (2) supporting a broad range of hardware, (3) using standard APIs,

programming models, and tools, (4) making the OS componentized and ROM-able to

allow for the best fit of memory and features, (5) enabling compelling products with

built-in features like communications, user interface, database, and file systems, (6) real-

time support, and (7) enabling battery-powered products by including unobtrusive power

management.

Componentization, one of the core design goals of the Windows CE operating

system, enables an embedded developer to choose the blocks or components of Windows

CE that are appropriate for the device he is building [HAL01]. This approach makes it

77

possible to build a variety of devices using the Windows CE operating system, including

industrial control systems, handheld PCs, and Pocket PCs. Since the Windows CE 3.0

operating system contains approximately 220 modules, the developer can use the

Platform Builder 3.0 tool to configure a custom image of Windows CE 3.0 by selecting

the components that are necessary for the device [HAL01]. Talisker developers will use

the same approach using the updated Platform Builder 4.0.

With a review of system background completed, we can now proceed with the

comparative analysis of the operating systems using an automated tool.

C. BASIS FOR ANALYSIS
Using Imagix 4D, six different “projects” to browse, explore, and analyze were

created for the experiment, including (1) Linux_OS_X86, (2) OpenBSD_OS_X86, (3)

Talisker_OS_X86, (4) Linux_Kernel_X86, (5) OpenBSD_Kernel_X86, and (6)

Talisker_Kernel_X86. In the experiment conducted using these six projects, three design

principles (hierarchical structuring, modularity, and information hiding) and two

complexity measures (cyclomatic complexity and number-of-lines-of-code) were used as

a basis for comparison. This section will present a brief overview of what these

principles and measures represent, their importance to proper software design, and how

they were used in the comparative analysis experiment.

1. Hierarchical Structuring

Recall from earlier discussion that to define a hierarchical structure, a partial

ordering relation such as “uses” or “depends on” needs to be defined between the

modules or programs. If the modules are assembled on different levels, a partial ordering

can be introduced giving three additional benefits to the system: (1) parts of the system

are simplified because they use the services of the lower levels, (2) if the upper levels

were cut off, the remaining lower levels are still considered as a usable and useful

product, and (3) common pitfalls of circular dependency such as live lock and deadlock

are avoided.

If the system were designed in such a way that the low level modules made use of

the high level modules, no hierarchical structure would exist, making it very difficult to

remove portions of the system and still have it be usable and useful. Recall from the

78

Multics experience that in their attempt to rid the system of dependency loops, they

decided to use levels of abstraction in their security kernel design as a means of reducing

complexity and providing precise and understandable specifications. By making lower

layers unaware of higher abstractions, the Multics kernel designers were able to reduce

the total amount of interactions in the system and thereby reduce the overall complexity.

In addition, these levels of abstraction simplified the correctness argument and kernel

debugging since each layer could be tested in isolation from all higher layers.

Using the information gathered in its database after parsing the operating system

source code, Imagix 4D can present 3-D graphical layouts that show a system’s

hierarchical structuring and dependencies. Using the tool’s different graphical layout

modes, we are able to see if the source code of each operating system is designed and

written in a manner that exhibits partial ordering.

2. Modular Programming
A module that has been well designed encapsulates a function or database and it is

always called upon by other modules for access to the module’s services. In a sense, the

module is a “database” containing entity that holds different types of information. To

access this database, three types of interfaces can be defined: those that initialize the data,

those that modify the data, and those that list the data.

When a software engineer decides to build a new system using modularity, the

designer needs to define the problem, define the databases, and then decompose these

into modules. This decomposition supports the understanding, analysis, and maintenance

of the interfaces and can provide a basis for least privilege. As an added benefit, modular

programming uses coding techniques that allow modules to be written with little to no

knowledge of the code in other modules; this allows the modules to be replaced or

reassembled without having any effect on the system as a whole. Recall that the other

benefits of modular design include improved development time, product flexibility (i.e.,

if the interface is stable, the module can undergo drastic internal changes without

affecting the other modules), and comprehensibility (i.e., it should be possible for anyone

to study the complete system one module at a time).

79

Using the information gathered in its database, Imagix 4D can present file

summary and function information reports that provide module characteristics, including

the total number of modules, the number of functions included in each module, and the

number of other functions that call a particular function given by the “callers” metric.

From the data gathered, some inferences can be made regarding modularity. For

instance, if an operating system uses a large number of modules, it may be inferred that

the design properly supports the understanding, analysis, and maintenance of the

interfaces. However, if a given module handles a plethora of different functions and

manages many databases, its modularity is questionable. In addition, the “callers” metric

may reveal how well this given module’s interface is defined and used. If the average

number of callers per function is high, then other modules call upon the encapsulated

functions of a given module through a well-defined interface. If this average is low, then

their exists a wide number of functions that are called rarely, which may demonstrate an

interface that is broad and not well-defined.

3. Information Hiding
A protected subsystem, as defined in earlier discussion, is a collection of

procedures and data objects that is encapsulated in a domain of its own. This

encapsulation allows the data structure of the protected object to be interpretively

accessed; for example, it does not allow its internal organization to be accessible except

by the internal procedures of the protected subsystem, which may be called only through

specifically designated, domain entry points.

Information hiding is such a design approach where the software is decomposed

into modules that hide design decisions. This helps shift attention away from the code

used to implement the module and concentrate more on the signature or interface of the

module. Therefore, the member variables used by each module should be private. To

manipulate this private data, a simple, high-level, well-defined interface should be

provided in the design to hide the implementation details. For instance, if a program

tracks vehicle velocity, the module that encapsulates this data should include “set

velocity” and “get velocity” functions rather than permitting an interface that directly

manipulates the variable. In comparison, the use of global variables in a software design

goes against the principle of information hiding.

80

From its database, Imagix 4D can present file summary reports that show the total

number of variables included in each source file as well as the total number of global

variables included in the header files. Using the explore features of Imagix 4D, all of the

variables in the source code can be queried to see which of these are also considered to be

global by the automated tool. A variable is categorized as global if it is manipulated by

more than one module.

4. McCabe Cyclomatic Complexity
The McCabe Cyclomatic Complexity metric, which measures the amount of

decision logic in a source code function, is independent of text formatting and nearly

independent of programming language. When considering the dynamic behavior of the

system, there is no practical way to check all of the possible control paths to verify

whether they produce correct results that are error-free. Since complexity is a common

source of error in software, McCabe decided to use his complexity metric to directly

allocate testing effort. Since the cyclomatic complexity is the minimum number of paths

that can, in linear combination, generate all possible paths through the module, one only

requires this complexity number to cover all of the relevant edges of each software

module giving a strong indicator of its testability, as well as its understandability and

receptiveness to modification. This resulting measure can be used in development,

maintenance, and reengineering situations to develop estimates of risk, cost, or program

stability.

For our analysis, recall McCabe’s threshold points for the cyclomatic complexity

as it pertains to software design. A value of less than 10 is ideal for good design; a value

greater than 10 but less than 15 requires that the designers know what behavior is desired,

and that they know how to achieve this mapping of specifications to the code

implementation properly. However, a value greater than 15 should only be attempted by

an experienced and knowledgeable staff that is using formal design methods, a modern

programming language, structured programming, code walkthroughs, and a

comprehensive test plan. From the Imagix 4D database, function information reports can

generate the cyclomatic complexity numbers for functions included in each module.

These values can be compared against McCabe’s threshold points to see the relative

complexity of each operating system.

81

5. Number-of-Lines-of-Code
Although the McCabe Cyclomatic Complexity metric is a more accurate measure

of the complexity exhibited by a module’s decision logic, Imagix 4D also includes other

software metrics such as the total lines of code, which are included as metric data in the

file summary and function information reports. From this archaic measure, the average

number of lines per function can be calculated giving a rough estimate of the relative

complexity of the operating system. For instance, if a function exceeds a full page or 60

lines of code, it may be considered to be too complex.

D. SOURCE CODE FILES INCLUDED IN THE ANALYSIS
The source trees as illustrated in these tables represent the actual amount of

operating system source code loaded into the automated tool and parsed into the Imagix

4D database. Once this information is available to the tool, the source code can be

browsed, explored, and analyzed.

1. Operating System Source Code
The source code directories for each operating system are shown in Tables 1, 2,

and 3. Some source code files related to networking, non-X86 architectures, and drivers

as well as any documentation directories were removed from the Linux, OpenBSD, and

Talisker projects to focus the study on the core i386 architecture, including the file

system, process scheduling, management of input/output (I/O) devices, memory

management, and the necessary library files.

From the directories shown, a few differences in the design of each operating

system can be seen. For instance, the OpenBSD system has a much larger number of

directories that are more specific to a set of functionality (i.e., different file system

directories), while Talisker has a broader categorization of its source code. This

difference may reflect OpenBSD’s design goal to build an operating system that is highly

modular.

All three operating systems show many similarities. For example, each system

has directories for file system management. Library and header files are in wide use

since all three operating systems are written in C. Each system appears to employ the

kernel concept in its system architecture. Besides the graphics, window manager, and

event manager, the one other difference in Talisker is the absence of a memory

82

management directory. Rather than keeping it separate, Talisker instead includes this

source inside its new kernel (nk) directory. As we will see later in our analysis, the

designers of Talisker decided to include much of the operating system, including the

large GWE source, in the kernel apparently for performance reasons.

asm fs i386 init ipc

kernel lib linux mm

Table 1. Linux 2.4.17 Source Directories – X86 Architecture.

adofs i386 isofs kern lib

misfs msdosfs nfs stand sys

ufs uvm vm xfs
Table 2. OpenBSD 2.9 Source Directories – X86 Architecture.

core device fsdmgr gwe nk

Table 3. Talisker Source Directories – X86 Architecture.

2. Kernel Source Code
The kernel source code modules for the Linux operating system are listed in

Tables 4 and 5. The reason for this separation of the kernel source is in accordance with

the way Linux handles portability and reusability of their code. Table 4 lists the modules

that are applicable to all platform architectures, while the modules in Table 5 are specific

to the X86 Intel architecture. The kernel source code files for OpenBSD in Table 6 and

Talisker in Table 7 also lists the modules that were loaded into the Imagix 4D database.

With the total number of modules totaling 60 in Linux and OpenBSD at 82, one

could infer from the names of the modules that both of these systems may use some form

of modular programming in their kernel designs. Talisker, in comparison, with only 40

modules in its kernel may fail to demonstrate whether the design employs a modular

approach or not. As previously discussed in the basis of the analysis, a module should

encapsulate one database, whether real or abstract, that handles a specific portion of the

problem decomposed and shared by several specific modules.

83

asm dma.c kmod.c ptrace.c sysctl.c
kernel exec_domain.c ksyms.c resource.c time.c
linux exit.c module.c sched.c timer.c
acct.c fork.c panic.c signal.c uid16.c

capability.c info.c pm.c softirq.c user.c
context.c itimer.c printk.c sys.c

Table 4. Linux Kernel Source Files – All Platforms.

acpitable.c i8259.c mpparse.c pci-visws.c sys_i386.c
apic.c init_task.c msr.c process.c time.c
apm.c io_apic.c mtrr.c ptrace.c traps.c

bluesmoke.c ioport.c nmi.c semaphore.c visws_apic.c
cpuid.c irq.c pci-dma.c setup.c vm86.c

dmi_scan.c ldt.c pci-i386.c signal.c
i386_ksyms.c mca.c pci-irq.c smp.c

i387c microcode.c pci-pc.c smpboot.c
Table 5. Linux Kernel Source Files – X86 Architecture.

CVS kern_fork.c kern_timeout.c syscalls.c sysctl.c
sys kern_fthread.c kern_xxx.c sysv_ipc.c uipc_syscalls.c

exec_aout.c kern_kthread.c kgdb_stub.c sysv_msg.c uipc_userreq.c
exec_conf.c kern_ktrace.c subr_autoconf.c sysv_sem.c vfs_bio.c
exec_ecoff.c kern_lkm.c subr_disk.c sysv_shm.c vfs_cache.c

exec_elf.c kern_lock.c subr_extent.c tty.c vfs_cluster.c
exec_elf64.c kern_malloc.c subr_log.c tty_conf.c vfs_conf.c
exec_script.c kern_ntptime.c subr_pool.c tty_pty.c vfs_default.c
exec_subr.c kern_physio.c subr_prf.c tty_subr.c vfs_init.c
init_main.c kern_proc.c subr_prof.c tty_tb.c vfs_lockf.c

init_sysent.c kern_prot.c subr_rmap.c tty_tty.c vfs_lookup.c
kern_acct.c kern_resource.c subr_userconf.c uipc_domain vfs_subr.c
kern_clock.c kern_sig.c subr_xxx.c uipc_mbuf.c vfs_sync.c

kern_descrip.c kern_subr.c sys_generic.c uipc_mbuf2.c vfs_syscalls.c
kern_event.c kern_synch.c sys_pipe.c uipc_proto.c vfs_vnops.c
kern_exec.c kern_sysctl.c sys_process.c uipc_socket.c vnode_if.c
kern_exit.c kern_time.c sys_socket.c uipc_socket2.c

Table 6. OpenBSD Kernel Source Files.

84

celog.c heap.c kdpacket.c mdx86.c profiler.c
compr2.c intrapi.c kdriver.c memtrk.c resource.c

dbg.c kdapi.c kdtrap.c objdisp.c schedule.c
dbgasync.c kdbreak.c kdkernel.c odebug.c sprofile.c

debug.c kdctrl.c kmisc.c physmem.c strings.c
exdsptch.c kddata.c kwin32.c ppfs.c stubs.c

exsup.c kdinit.c loader.c printf.c sysinit.c
fault.c kdmove.c mapfile.c profile.c virtmem.c

Table 7. Talisker Kernel Source Files.

E. INFORMATION GATHERED FROM IMAGIX 4D
1. Function Call Graphs
Using the different graphical layout modes available with Imagix 4D, we are able

to see if the source code of each operating system is designed and written in a manner

that exhibits partial ordering. To observe whether this property is satisfied, Imagix 4D

includes in all of its operating modes the compact graph layout option to help visualize

the layering of the system design.

Under the compact layout, all of functions at the top-most layer are considered the

root function symbols, which we will call “Layer 1.” In the operating system

architecture, “Layer 1” is the application-programming interface (API). The next level or

“Layer 2” contains all of the function symbols directly related to the root function

symbols in “Layer 1.” The third level (Layer 3) contains all of the functions that are

directly related to the second level (Layer 2) but not the initial root level (Layer 1), and so

on. Hence, the functions in “Layer 1” call the functions in “Layer 2,” which in turn call

the functions in “Layer 3,” and so on. This direct relationship is a “depends on” relation

between the software layers. However, the “depends on” arrows can point in either

direction for function calls or reads. Recall that if the operating system source code is

designed and written in a manner that exhibits partial ordering, then there should be no

arrows in the up direction between the different software layers.

The Linux, OpenBSD, and Talisker operating systems, kernels, and schedule

modules were viewed using the compact layout mode. In the operating system and

kernel projects, the following procedure was used to see whether any “depends on”

arrows were pointing up toward higher layers in the hierarchy:

85

- In “Browse” mode, select the function checkbox in the bottom left hand corner

of the “Graph” window. (We only wish to view the operating system functions.)

- Shift to the “Explore” mode and select “Restore All” from the “Filter” pull-

down menu. (This will display all of the operating system’s function symbols.)

- Select “Root Symbols” from the “Select” pull-down menu. (This will highlight

Layer 1 in the graph.)

- Select “Group Selected…” from the “Group” pull-down menu and enter “Layer

1” for the group name. (Grouping the functions of Layer 1 into one graph

symbol.)

- Now select “Step Down” from the “Traverse” pull-down menu. (Proceeds to the

next layer in the hierarchy by highlighting all of the second layer, function

symbols).

- Before grouping “Layer 2,” de-select the “Layer 1” symbol by clicking on its

name in the “List” window. (This prevents the layers from becoming grouped

rather than keeping them separate.)

- Continue this process until all of the layers are grouped.

- View the new graph in 2-D, horizontal, normal mode by de-selecting the “3-D,”

“Compact,” and “Vertical” checkboxes in the bottom of the “Graph” window.

(From this new presentation, we can now see what layers make calls in the

upward direction.)

In the screen shots that follow, the kernel function hierarchies that were used at

the start of this process are presented for illustration. The operating system graphs are

not included since they replicate the kernel graphs with detail that is hard to display. The

previous procedure was applied to all six of the operating system and kernel graphs to see

if any calls are in fact made in the up direction. These six layering screen shots follow

the six kernel and schedule module function hierarchy graphs.

a. Kernel Function Hierarchies
Figures 27, 28, and 29, which illustrate the Linux, OpenBSD, and Talisker

kernels respectively, are examples of compact graph layouts.

86

Figure 27. Linux Kernel – Function Hierarchy (Compact View).

87

Figure 28. OpenBSD Kernel – Function Hierarchy (Compact View).

88

Figure 29. Talisker Kernel – Function Hierarchy (Compact View).

b. Schedule Module Function Hierarchies
Before proceeding, it is necessary to point out the naming convention for

the scheduling source code used by each operating system. In Linux and Talisker, the

89

source code files are called “sched.c” and “schedule.c,” respectively. In contrast,

OpenBSD uses “kern_synch.c” as the name of its scheduling module.

The schedule module hierarchies are shown to see the layout of the Linux,

OpenBSD, and Talisker schedule source files. The functions included in each schedule

module were then studied to determine whether any of these should not be included in the

module. Recall from the modularity discussion that if a given module handles a plethora

of different functions and manages many databases, its modularity is questionable. The

process of finding upward “depends on” arrows does not apply to the schedule module

functions. Only a module’s interface with the rest of the operating system is considered

part of the hierarchical structuring.

In Figure 30, the Linux schedule module is shown in the compact layout

with a total of five levels being visible in the hierarchy. Figure 31, which illustrates the

synchronization module used in OpenBSD, and Figure 32, which shows the Talisker

version of the scheduling module, also provide the same information as observed in

Linux, except OpenBSD and Talisker both show four levels.

Other observations can be made about the number of functions in each

schedule module regarding modularity. For instance, Linux and OpenBSD both have 17

functions that are included inside each module. From the names of the functions in

Linux, such as “add_to_runqueue,” “goodness,” and “schedule,” it can be concluded that

these handle process scheduling. With function names like “preempt,” “roundrobin,” and

“schedcpu,” the same can conclusions can be drawn for the OpenBSD module. Talisker,

however, with over 143 different functions contained within its “schedule.c” module,

appears to have more than just functions related to scheduling. For instance, several

other functions handled in separate modules in Linux and OpenBSD are shown to be

included in Talisker’s schedule module, including semaphore and mutual exclusion

functions, memory paging functions, kernel and user time functions, and thread creation

(forking) functions. Since the module handles a plethora of different functions and

manages many databases, its modularity is questionable.

90

Figure 30. Linux Scheduling – Function Hierarchy (Compact View).

Figure 31. OpenBSD Scheduling – Function Hierarchy (Compact View).

91

Figure 32. Talisker Scheduling – Function Hierarchy (Compact View).

c. Operating System Layering
The results from the procedure to find upward “depends on” arrows in the

operating system layers are shown in the next three screen shots. In Figure 33, Linux

shows eight layers in its hierarchical structuring. The red arrows represent the “calls”

relations while the light purple arrows represent the “reads” relations. From the

illustration, many “depends on” arrows are pointing in upward direction. This means that

the lower layers are making “calls” to higher layers, which is not in agreement with

partial ordering. OpenBSD, in Figure 34 with eight layers, and Talisker, in Figure 35

with nine layers, also exhibit a breakdown in partial ordering with dependencies in the

upward direction. In the analysis section, the number of layers and number of upward

dependencies will be used to determine which operating system most closely meets the

criteria for partial ordering.

92

Figure 33. Linux Operating System Layering.

93

Figure 34. OpenBSD Operating System Layering.

94

Figure 35. Talisker Operating System Layering.

d. Kernel Layering
The following three screen shots are the results from the procedure to find

upward “depends on” arrows in the kernel layers. Linux, in Figure 36, shows six layers,

OpenBSD, in Figure 37, has five layers, and Talisker, shown in Figure 38, displays seven

layers in their kernel hierarchies. As illustrated in the operating system graphs, many

“depends on” arrows are pointing in upward direction. The analysis of this data will be

95

presented in the next section. From visual observation, however, it appears that

OpenBSD has fewer circular dependencies with Linux next in line followed by Talisker.

Figure 36. Linux Kernel Layering.

Figure 37. OpenBSD Kernel Layering.

96

Figure 38. Talisker Kernel Layering.

2. File Summary Reports
File summary reports provide an overview of the files in the project. By

tabulating these reports by type (i.e., source and header files) and by directory location,

information about lines of code, lines of comments, number of functions, and the number

of variables are listed. These statistics are useful in helping software designers make

improvements in the implementation of their particular software package. In our

comparative analysis, where software design principles are being considered, the

information provided in these reports can help determine which system better satisfies

modularity and information hiding.

During our data gathering process using Imagix 4D, file summary reports were

generated for each of the six projects (viz, the three operating systems and the three

kernels). Since the file summary report is not specific to each module, information about

the three different kernel schedule modules had to be gathered from other sources,

primarily the function information reports, which will be discussed in the next subsection.

The following screen shots reflect a summary of the six different reports that were

gathered for our analysis.

97

a. Operating System Files
Figures 39, 40, and 41 show the top portion of the file summary report

generated for the respective Linux, OpenBSD, and Talisker operating systems.

Figure 39. Linux Operating System – File Summary Report.

Figure 40. OpenBSD Operating System – File Summary Report.

Figure 41. Talisker Operating System – File Summary Report.

98

b. Kernel Files
Summary information reports on all the kernel modules for the Linux,

OpenBSD, and Talisker operating systems are shown in Figures 42, 43, and 44,

respectively. The parts of the reports that were used to create the summaries in the

analysis section included “Total Files,” “Total KLines,” “Members Funcs”, and

“Members Vars”. These measures were extracted from the source file lines only.

Figure 42. Linux Kernel – File Summary Report.

Figure 43. OpenBSD Kernel – File Summary Report.

Figure 44. Talisker Kernel – File Summary Report.

99

3. Function Information Reports
Imagix 4D provides another type of report that lists the functions in a project,

showing complexity, lines of code inside the function, total lines of code, number of

callers, and the file location. The information in this report can be sorted in decreasing

order using any one of these five function characteristics. Software designers can use

these statistics to study the complexity of their source code during the implementation

and maintenance phases of an operating system lifecycle. In our comparative analysis,

the information provided in these reports can help determine which operating system is

more complex in its design, and how the average number of callers per function affects

our modularity comparison.

The data gathered for our study and analysis include the generation of nine

different function information reports. In each report, the functions were listed in order

of complexity starting from the highest measure. The other sorting options were not

viewed as valuable since the reports were printed to a text file and imported into

corresponding spreadsheets, where sorting could be controlled at a higher level beyond

the capabilities of Imagix 4D. Using the spreadsheet application, a complexity

distribution related to McCabe’s threshold values for complexity (i.e., less than or equal

to 10 and greater than 10) can be calculated using the spreadsheet’s numbering scheme.

The number of functions that have callers greater than zero can also be found by sorting

these numbers in decreasing order. Taking the total number of callers and dividing by the

total number of called functions can provide an average for comparison value. The first

three function information reports that were generated using this process included the

Linux, OpenBSD, and Talisker operating systems. The three respective operating system

kernels followed, but the three scheduling module reports due to its manageable size did

not require importation into corresponding spreadsheets. From the analysis that will

follow in the next section, the complexity distribution for each of these sets of three will

help determine which system is more complex. However, the “number of callers” data

will only be shown in the analysis of the schedule modules to support an argument

regarding modularity. The following nine screen shots reflect a summary of the nine

different reports that were gathered for our analysis.

100

a. Operating System Functions
As stated previously, the function information reports that are shown in

Figures 45, 46, and 47 give the first 20 functions of the Linux, OpenBSD, and Talisker

operating systems respectively.

Figure 45. Linux OS – Function Information Sorted By Complexity.

Figure 46. OpenBSD OS – Function Information Sorted By Complexity.

101

Figure 47. Talisker OS – Function Information Sorted By Complexity.

From these three function information reports, one can conclude that

OpenBSD’s complexity is far above the McCabe threshold values with measures in the

hundreds. In comparison, Talisker shown in Figure 47 appears to have a better handle on

complexity, although it surpasses the threshold McCabe considers un-testable and high

risk. Linux falls somewhere in between of these two. An analysis of the data gathered

will be presented in the next section.

b. Kernel Functions
After inspection of Figures 48, 49, and 50 of the Linux, OpenBSD, and

Talisker kernels respectively, all three appear to have nearly the same level of complexity

at first glance. If one was to order these from best to worst, it appears that Linux would

be first, followed by Talisker, and then OpenBSD. Trying to figure out which system is

more complex using only the function reports is difficult. As mentioned earlier, this data

needs to be imported into a spreadsheet and studied further. The results of this procedure

will be referenced in the summary tables included in the analysis section. The parts of

the reports that were used to create the summaries included the “Cmplx” values for

complexity. In the schedule module analysis, however, the “Lines” and “Callers” metrics

were included in the summaries to aid in the modularity analysis.

102

Figure 48. Linux Kernel – Function Information Sorted By Complexity.

Figure 49. OpenBSD Kernel – Function Information Sorted By Complexity.

103

Figure 50. Talisker Kernel – Function Information Sorted By Complexity.

c. Schedule Module Functions
The Linux, OpenBSD, and Talisker function reports for each schedule

module are displayed in Figures 51, 52, and 53, respectively. As stated earlier, the

“Cmplx,” “Lines,” and “Callers” data was included in the summary tables created and

presented in the analysis section.

Figure 51. Linux Kernel Schedule Module – Function Information Report.

104

Figure 52. OpenBSD Schedule Module – Function Information Report.

Figure 53. Talisker Kernel Schedule Module – Function Information Report.

From these function reports, Talisker in Figure 53 is the most complex

regarding the cyclomatic complexity and lines of code; in addition, it has the most

number of functions included inside its schedule module equaling 143. As will be shown

in the analysis section, the average number of callers per function result will support the

argument that Talisker’s schedule module interface is not well defined. In comparison,

Linux and OpenBSD have the same number of functions, but Linux is the least complex

regarding cyclomatic complexity and lines of code. From a brief glance at the number of

105

callers, OpenBSD has a higher number of callers than Linux. The actual numbers will be

reviewed in the analysis regarding modularity.

4. Global Variable Graphs
In this portion of the data gathering process of the experiment, the “Explore”

mode features of the Imagix 4D tool were used to help find all of the global variables in

the source code found in each of the six projects as well as the three schedule modules.

Recall that the definition of a global variable, as observed from using Imagix 4D, is any

variable that is shared by two or more modules (source files) in the system. If a global

variable exists between modules, then the principle of information hiding is no longer

valid in the design, thereby affecting its modularity. To assist those designing,

implementing, and maintaining an operating system over its lifecycle, the Imagix 4D tool

can help determine if global variables are ever introduced.

The process that was used to find the global variables is straightforward. For

instance, while in the “Browse” mode in one of the six Imagix 4D projects, the

“Variables” checkbox in the bottom left hand corner of the graph window should be the

only one selected. Then one needs to proceed to the “Explore” mode and select from the

“Filter” pull-down menu the “Restore All” selection, which displays all of the variables

stored in the database. The Graph window will show a forest of green variable symbols,

and the List window will correspond to each variable listing its name and location. The

“All” function from the “Select” pull-down menu then needs to be selected followed by

the “Find” function found in the same pull-down menu. This command will present a

“Find” pop-up window where a type “Program Element” and subtype “Variable” need to

be selected from the appropriate scroll-selection boxes. The final step involves clicking

on the “Options” button of this pop-up window, which displays another window with

different find query options. From the “Scope” option, select “Global” from the list of

choices and then click on the “OK” button followed by the “Find” button. In the Graph

and List windows, only the global variables will be highlighted as a result of this

operation. From the List window, the total number of global variables can be summed.

The following six screen shots show the results of this process for each of the

three kernel projects and the three schedule modules. The three operating systems were

also considered in this experiment, but the screen shots were not included due to the

106

problem of properly viewing such a large number of variables. For the schedule

modules, the only change in procedure is to select the corresponding schedule module

(i.e., “sched.c” for Linux, “kern_synch.c” for OpenBSD, and “schedule.c” for Talisker)

from the “File Browser” while either in the “Browse” or “Explore” modes of Imagix 4D

rather than restoring all the variables. The analysis section that follows will summarize

the information gathered for the operating systems, the kernels, and the schedule

modules.

a. Kernel Global Variables

Figure 54. Linux Kernel – Global Variables.

107

Figure 55. OpenBSD Kernel – Global Variables.

108

Figure 56. Talisker Kernel – Global Variables.

From the inspection of Figure 54, which shows the global variables of the

Linux kernel highlighted in the List window and the Graph window, it looks visually

apparent that Linux as well as the OpenBSD and Talisker systems shown in Figures 55

and 56 all have a considerable number of global variables.

109

b. Schedule Module Global Variables
The next three screen shots show all of the variables included in each of

the three operating system’s schedule modules. From these variables, the procedure

discussed earlier was used to find all of the global variables. For instance, the Linux

schedule module, shown in Figure 57, has seven global variables out of its total of 46

variables. In comparison, OpenBSD as shown in Figure 58 only has five global

variables among its list of 67. Talisker, in Figure 59, has a total of 79 global variables

out of 776.

Figure 57. Linux Kernel Schedule Module – Global Variables.

110

Figure 58. OpenBSD Kernel Schedule Module – Global Variables.

111

Figure 59. Talisker Kernel Schedule Module – Global Variables.

The analysis section that follows will summarize the information gathered

for the schedule module. From these, we will determine which operating system has the

scheduling module that best demonstrates information hiding.

F. ANALYSIS OF DATA GATHERED
1. Hierarchical Structuring
From the procedure we established to find the upward dependencies in the six

operating system and kernel layering graphs shown in the data gathering section, we are

112

able to more closely study the grouping of dependencies that go either in the up or down

direction in the hierarchical structures. If any dependencies are shown to exist in the

upward direction, then we know that circular dependencies may exist between the layers

with no partial ordering, thereby breaking down the hierarchical structure. From the

screen shots observed in the previous section, we know that none of the structures we

analyzed uses complete partial ordering in its layered design. Thus, we will use the

numbers gathered from the previous graphs to determine which of the three operating

systems and which of the three kernels best exhibits a properly layered system. To

determine the number of calls and reads in both the up and down directions in each of the

graphs, the arrowheads were counted and summed.

a. Operating System Layering
The operating system summary shown in Table 8 illustrates that the

OpenBSD operating system with 11 calls and 3 reads in the upward direction best

supports the principle of hierarchical structuring. With 20 calls and 5 reads in the up

direction, Linux is the worst example of proper partial ordering. Talisker, in comparison,

has 13 calls and 4 reads in the up direction, thereby falling in between the two other

operating systems. We will now take a look at the kernel summary.

Calls/Reads
Down

Calls/Reads
Up

Linux 8 6 / 6 20 / 5

OpenBSD 8 5 / 4 11 / 3

Talisker 9 6 / 4 13 / 4

Operating
System Layers

Dependencies

Table 8. Operating System Layers and Dependencies.

b. Kernel Layering
Table 9 shows the kernel summary that was built from the data gathered in

the previous section. Using the results found, the OpenBSD kernel with 4 calls and 2

reads in the upward direction again best supports the principle of hierarchical structuring.

Talisker, however, with 10 calls and 4 reads in the up direction is the worst among the

113

three kernels of proper partial ordering. In comparison, Linux with 7 calls and 0 reads in

the up direction falls in between the other two kernels.

Calls/Reads
Down

Calls/Reads
Up

Linux 6 4 / 3 7 / 0

OpenBSD 5 3 / 1 4 / 2

Talisker 7 4 / 4 10 / 4

Kernel Layers
Dependencies

Table 9. Kernel Layers and Dependencies.

2. Modularity

From the data gathered in the previous section, some inferences can be made

regarding modularity. For instance, if an operating system uses a large number of

modules, it may be inferred that the design properly supports the understanding, analysis,

and maintenance of the interfaces. However, if a given module handles a plethora of

different functions and manages many databases, its modularity is questionable.

The summaries for the operating system and kernel projects were constructed

using the file summary report data, where the total number of modules and functions can

be obtained from the source file listings. Using these figures, an average number of

functions per module were calculated to help compare the different operating systems and

kernels. The summary for the schedule module analysis was built using the function

information reports, where the number of “callers” and number of functions can be

extracted. These together produced an average number of callers per function to help

determine which module has the most well defined interface.

a. Operating System Code
From Table 10, which summarizes the operating system source code, it

can be seen that the Talisker operating system exhibits 17 functions per module on

average, while Linux has 10 functions per module and OpenBSD has 8 functions per

module. Recall that if a given module handles several different functions and manages

many databases, its modularity is questionable. This logic may be applied to our

114

statistical data. Among the three operating systems in our analysis, if a higher average

number of functions per module can be found, then the corresponding operating system’s

modularity is debatable. The contra-positive of this inference would state that an

operating system supports modularity better if a lower average number can be found.

Since Talisker has the highest average, its modularity is indeed questionable. OpenBSD

with the lowest average may be the best example of a modular design. In comparison,

Linux exhibits a low average number, but not as well as OpenBSD.

Linux
C Code

408 4015 10

OpenBSD
C Code

467 3710 8

Talisker
C/C++ Code

63 1075 17

Operating
System

Modules Functions Avg No
Func/Mod

Table 10. Summary of Operating System Modules and Functions.

b. Kernel Code
The kernel summary illustrated in Table 11 has the same conclusions as

those found in the operating system’s logical analysis regarding modularity.

Linux
C Code

60 769 13

OpenBSD
C Code

82 925 11

Talisker
C/C++ Code

40 776 19

Kernel Modules Functions Avg No
Func/Mod

Table 11. Summary of Kernel Modules and Functions.

OpenBSD with 11 functions per module on average is the lowest average

of the three kernels. Hence, OpenBSD best demonstrates modularity. The Talisker

kernel is the furthest from demonstrating proper modularity with an average of 19

115

functions per module. In comparison, Linux falls in between these two but closer to

OpenBSD with an average of 13 functions per module.

c. Schedule Module Code
In the analysis of the schedule module, the “callers” metric was used from

the function information reports to reveal how well the module interfaces are defined and

used. If the average number of callers per function is high, then other modules call upon

the encapsulated functions of a given module through a well-defined interface. If this

average is low, then their exists a wide number of functions that are called rarely, which

may demonstrate an interface that is broad and not well-defined.

Linux
sched.c

17 11 30 3

OpenBSD
kern_synch.c

17 16 126 8

Talisker
schedule.c

143 141 262 2

Schedule
Module

Functions Callers Avg No
Calls/Func

Functions
Called

Table 12. Summary of Schedule Module Functions and Callers.

From the summary in Table 12 of the three schedule modules, the OpenBSD

module, with an average of 8 calls per function (126 callers divided by 16 called

functions out of 17), best meets this quality of a well-defined interface. Linux is not too

far behind with an average of 3 calls per function (30 callers divided by 11 called

functions out of 17). In comparison to these three, Talisker’s schedule module, with 2

calls per function (262 callers divided by 141 called functions out of 143), has the lowest.

This result infers that Talisker’s schedule interface is too broad and its modularity is

questionable since it includes several different functions and manages many databases

that are rarely called. This makes writing the schedule module with little to no

knowledge of the code in other modules difficult, and it does not allow the module to be

replaced or reassembled without having any effect on the system as a whole.

116

3. Information Hiding
From our previous basis discussion, information hiding helps shift attention away

from the code used to implement the module and concentrate more on the signature or

interface of the module. Therefore, the member variables used by each module should be

private, and a simple, high-level, well-defined interface should be the only mechanism

that manipulates their values. Global variables do not exhibit any of these properties

since two or more modules share them in the system, degrading the modularity of the

design. The summaries that follow will help determine which of the operating systems,

kernels, and schedule modules has the least percentage of global variables in each of their

included sets of variables. This will aid in determining the better design regarding

information hiding and modularity.

Variable data from the file summary reports along with the global variable search

procedure explained in the last section were used to build the operating system and kernel

summaries. For the number of variables in the summary tables, the source amount was

extracted from the “source file” portion of the file summary report, while the global

headers value was taken from the “header file” category. The globals in the source value

was found using the search method using Imagix 4D’s graph and list windows. The total

number of variables, used in finding the percentage of global variables overall, was taken

from the “total file” portion of the summary report. The schedule module summaries

only used the data directly found using the global search method.

a. Operating System Global Variables
The summary in Table 13 illustrates the results of the analysis performed

on the three operating systems.

Source Global Hdrs

Linux 21580 6980 1138 8118 8118/28560 (28%)

OpenBSD 21165 5129 1773 6902 6902/26294 (26%)

Talisker 5497 5907 450 6357 6357/11404 (56%)

% Total Variables
that are Global

Number of Variables Globals in
Source

Operating
System Total Globals

Table 13. Operating System Global Variable Summary.

117

In Linux, 1138 global variables out of 21580 were found in the source.

This number summed with the 6980 global variables included in the header files yielded

a total global variable percentage of 28 (8118 global variables divided by 28560 total

variables) with respect to all of the variables listed in the Imagix 4D database for the

Linux operating system. With 1773 global variables out of 21165 found in the source

summed with the 5129 global header variables, OpenBSD has the lowest percentage of

26 (6902 global variables divided by 26294 total variables) with respect to the variables

loaded in the database. With respect to the total variable count in the Imagix 4D

database, the Talisker operating system had a percentage of 56 (6357 global variables

divided by 11404 total variables), which was found using summation of the 450 global

variables out of 5497 found in the source plus the 5907 global header variables. From

these results, the principle of information hiding is best demonstrated by the OpenBSD

operating system. The kernel analysis will be presented next for comparison.

b. Kernel Global Variables
Of the global variables found in the source using the Imagix 4D search

method defined earlier in the data gathering section, 214 global variables out of 2880

were found in the Linux kernel, 296 global variables out of 4923 were found in the

OpenBSD kernel, and 369 global variables out of 4010 were found to exist in the Talisker

kernel.

Source Global Hdrs

Linux 2880 2112 214 2326 2326/4992 (47%)

OpenBSD 4923 2842 296 3138 3138/7765 (40%)

Talisker 4010 4765 369 5134 5134/8775 (59%)

% Total Variables
that are Global

Number of Variables Globals in
Source

Kernel Total Globals

Table 14. Kernel Global Variable Summary.

From the global variable summary presented in Table 14, it can be

observed that the OpenBSD kernel has the fewest number of global variables with respect

to the total number of variables loaded into the Imagix 4D database with a percentage of

40 (3138 global variables divided by 7765 total variables), while the Talisker kernel has

118

the highest number with a percentage of 59 (5134 global variables divided by 8775 total

variables). Linux falls in between of these two with a percentage of 47 (2326 global

variables divided by 4992 total variables). The ranking of the three kernels match that of

the operating system analysis, with OpenBSD first, Linux second, and Talisker third.

c. Schedule Module Global Variables
In the schedule module analysis, the search method was the only approach

available to count the total number of variables and global variables in the module source

code. As illustrated in Table 15, which shows the schedule module summary, the

“sched.c” module in Linux has 7 global variables out of 46 (15 percent). OpenBSD’s

“kern_synch.c” file has the least amount with a percentage of seven (5 global variables

divided by 67 total). The “schedule.c” module in Talisker falls in between the previous

two with 79 global variables out of 776 (10 percent). Like the operating system and

kernel analysis, OpenBSD’s schedule module best satisfies the information hiding

principle, but Talisker is second with Linux being third.

Linux
sched.c 46 7 15%

OpenBSD
kern_synch.c 67 5 7%

Talisker
schedule.c 776 79 10%

% Total Variables
that are Global

Globals in
Source

Schedule
Module

Number of
Source

Variables

Table 15. Schedule Module Global Variable Summary.

4. McCabe Cyclomatic Complexity Distribution

From McCabe’s threshold points for the cyclomatic complexity as it pertains to

software design, a value of less than 10 is ideal for good design, but a value greater than

10 requires that the designers know what behavior is desired, and that they know how to

achieve this mapping of specifications to the code implementation properly.

In the operating system, kernel, and schedule module summaries that follow,

function information reports were used to extract the cyclomatic complexity numbers for

the functions included in each module. Of the total number of functions loaded into the

119

Imagix 4D database, most of these had complexity data calculated and made available by

the automated tool. The others not considered did not fit McCabe’s profile of a function

with entry and exit points and decision logic (i.e., macros or other types). Of the data

gathered, the cyclomatic complexity distributions for the operating systems, kernels, and

schedule modules can be compared against McCabe’s threshold points as well as against

each other to see which is the most and least complex. Complexity values greater than 10

are discussed in the analysis, while the greater than 15 values are merely illustrated for

continuity.

a. Operating System Complexity
From the summary in Table 16, which illustrates the complexity

distributions for the three different operating systems, Talisker is the least complex

system with only 13 percent (141 functions out of 1067) of its functions having

complexity values greater than 10. The most complex is OpenBSD, with 720 of 3596 (20

percent) of its functions having complexity amounts exceeding 10. With 597 of 3973 (15

percent) of its functions having complexity values greater than 10, Linux is in between

the previous two. The kernel summary will be reviewed next for comparison.

Total
Number

Complexity
Data Avail Value > 10 Value > 15

Linux 4015 3973 597
(15%)

336
(8%)

OpenBSD 3710 3596 720
(20%)

415
(12%)

Talisker 1075 1067 141
(13%)

88
(8%)

Operating
System

Functions Complexity

Table 16. Operating System Complexity Distribution.

b. Kernel Complexity
The complexity distribution summary for the three different kernels is

shown in Table 17. Like the operating system analysis, the OpenBSD kernel is the most

complex of the three with 21 percent (195 functions out of 922) of its functions having

complexity values greater than 10. In comparison to the previous analysis, the least

complex is the Linux kernel with 82 of 753 (11 percent) of its functions having

120

complexity amounts exceeding 10. With 118 of 776 (15 percent) of its functions having

complexity values greater than 10, the Talisker kernel falls in between the other two

kernels.

Total
Number

Complexity
Data Avail Value > 10 Value > 15

Linux 769 753 82
(11%)

37
(5%)

OpenBSD 925 922 195
(21%)

112
(12%)

Talisker 776 776 118
(15%)

75
(10%)

Kernel
Functions Complexity

Table 17. Linux Kernel Complexity Distribution.

c. Schedule Module Complexity

As the schedule module summary shows in Table 18, this portion of the

complexity analysis has Linux as the least complex followed by OpenBSD and then

Talisker.

Total
Number

Complexity
Data Avail Value > 10 Value > 15

Linux
sched.c

17 14 1
(7%)

0
(0%)

OpenBSD
kern-synch.c

17 17 3
(18%)

1
(6%)

Talisker
schedule.c

143 143 33
(23%)

19
(13%)

Schedule
Module

Functions Complexity

Table 18. Schedule Module Dependencies and Complexity Summary.

The Linux schedule module with only one of its 17 functions having a

complexity greater than 10 is the least complex, while OpenBSD with 3 of 17 functions

has a complexity greater than 10. In comparison, Talisker has 33 of 143 module

121

functions with values greater than 10, leading to the highest complexity of all the

schedule modules analyzed.

5. Number-of-Lines-of-Code
The file summary reports from the operating system and kernel projects provide

data about the source files regarding the number of functions and the total number-of-

lines-of-code. These measures were used to build the operating system and kernel

summary reports that follow. For the schedule module analysis, the summary table

constructed used data extracted from the function information reports since specific

module details are not included in the file summaries. Using this data gathered in the

previous section, an average number of lines per function were calculated for each case in

the analysis. These results will help determine which operating system, kernel, and

schedule module bests matches the archaic thumb rule that a function should not exceed

more than 60 lines of code. Although McCabe metric is a better measure of complexity,

this analysis is included to compare against the cyclomatic complexity results.

a. Operating System Code
The McCabe complexity analysis for the three operating systems placed

Talisker as the least complex followed by Linux, with OpenBSD next. In the complexity

summary illustrated in Table 19, these results agree with the McCabe analysis. With an

average of 52 lines of code per function (56K lines of code divided by 1075 functions),

Talisker is the least complex. Linux follows with 61 lines per function (245K lines of

code divided by 4015 functions). And OpenBSD is the most complex with 66 lines of

code per function on average (245K lines of code divided by 3710 functions).

Linux
C Code

4015 245K 61

OpenBSD
C Code

3710 245K 66

Talisker
C/C++ Code

1075 56K 52

Operating
System Functions Lines Avg No.

Lines/Func

Table 19. Operating System - Lines of Code Complexity Summary.

122

b. Kernel Code
From the previous kernel analysis using McCabe’s complexity metric,

Linux, Talisker and OpenBSD was the ranking found from least to most complex. Using

the average number of lines per function, the results again agree with the earlier analysis

as shown in Table 20. Linux, with 39K lines of code divided by 769 functions, has an

average of 51 lines per function, making it the least complex kernel. The Talisker kernel

comes in second with 57 lines per function (44K lines of code divided by 776 functions).

And the most complex, with an average of 61 lines of code per function (56K lines

divided by 925 functions), is the OpenBSD kernel.

Linux
C Code

769 39K 51

OpenBSD
C Code

925 56K 61

Talisker
C/C++ Code

776 44K 57

Kernel Functions Lines Avg No.
Lines/Func

Table 20. Kernel - Lines of Code Complexity Summary.

c. Schedule Module Code
As the schedule module summary shows in Table 21, the “sched.c”

module found in Linux is the least complex with 23 lines of code per function on average

(394 lines divided by 17 functions).

Linux
sched.c

17 394 23

OpenBSD
kern_synch.c

17 546 32

Talisker
schedule.c

143 5413 38

Schedule
Module Functions Lines Avg No.

Lines/Func

Table 21. Schedule Module - Lines of Code Complexity Summary.

OpenBSD’s “kern_synch.c” source file is the second in line with 32 lines

per function (546 lines divided by 17 functions). In comparison, the “schedule.c” module

123

found in Talisker has an average of 38 lines of code per function (5413 lines divided by

143 functions), making it the most complex. These results again match those found using

the McCabe complexity metrics.

G. COMPLEXITY IN OPERATING SYSTEMS
Alan Shaw [SHA74] once stated that computer operating systems are among the

most complex “systems” ever devised by humans, and it is only recently that we have

been able to understand and coherently organize this complexity. From the complexity

analysis that was conducted using the McCabe approach, the values calculated by Imagix

4D greatly surpassed the recommended threshold points previously presented. Some of

the reasons for these large values may be due to the complex nature of operating systems

as commented by Shaw. Memory addressing, process scheduling, interrupts and

exceptions, system calls, I/O device management, virtual file system management, and

program execution in a multithreaded environment, are only a few of the many

capabilities required of modern operating systems today. The values found in our

comparative analysis may not necessarily be bad, but rather characteristic of complexity

at another level. Therefore, this higher complexity should not be a reason to deter

improvements in the design and implementation of operating systems.

H. CONCLUSION
From our comparative analysis, several different aspects of the three operating

systems and their respective kernels and schedule modules were studied, keeping the

principles of hierarchical structuring, modular design, and information hiding serving as

the basis of the analysis. The McCabe Cyclomatic Complexity and the number-of-lines-

of-code metrics were also included in this basis. As a result, Table 22 shows a summary

of the design and complexity issues considered. In this presentation, a number one

signifies that a certain system, kernel, or module exhibited the best qualities of a certain

design principle. For the two complexity measures illustrated, a number one signifies the

least complex. As illustrated, OpenBSD is the best overall when considering hierarchical

structuring, modularity, and information hiding. The Linux kernel and scheduler, on the

other hand, are least complex when considering the McCabe complexity and the number-

of-lines-of-code, whereas the Talisker scores best of the operating systems.

124

Linux
OS 3 2 2 2 2

OpenBSD
OS 1 1 1 3 3

Talisker
OS 2 3 3 1 1

Linux
Kernel 2 2 2 1 1

OpenBSD
Kernel 1 1 1 3 3

Talisker
Kernel 3 3 3 2 2

Linux
Sched X 2 3 1 1

OpenBSD
Synch X 1 1 2 2

Talisker
Schedule X 3 2 3 3

Information
Hiding

McCabe
Complexity

Number-of-
Lines-of-Code

Hierarchical
Structuring

Modularity

Table 22. Summary of Comparative Analysis.

125

VII. CONCLUSION

A. OPERATING SYSTEM SECURITY REQUIREMENTS
It is important to note that system security requirements exist as a management

tool. In essence, this tool assists in the identification and prioritization of project

implementation decisions, which impact the evolution of a reasonably secure operating

system. The effectiveness of this tool may be limited by the importance placed upon

security in relation to the operating system and the data, which is generated and residing

on the system.

When weighing performance requirements against system security requirements,

a balance must be defined and preserved. It is of little value to a user of a high

performance operating system if resource availability is sporadic due to control or

manipulation of the operating system by an unauthorized source. It is also of little value

to a system user if resource availability is significantly degraded due to over tasking in

support of system security requirements. Nevertheless, security requirements within

operating systems should not be left for discovery at a later date or briefly discussed and

planned during a project wrap-up. They need to be thoroughly defined in parallel with

other requirement analyses in order to reduce cost and produce a system that exhibits

security behavior that is coherent with respect to its requirements and that possesses a

proper balance between other functionality and security.

B. SECURE OPERATING SYSTEM DEVELOPMENT
As stated by Anderson [AND96], we should never forget that the great majority

of actual security failures in operating systems result from simple blunders in design,

construction, and operation.

From the secure operating system overview, we noted that the environment to be

protected must be well understood, an assessment of the threats to security must be

reviewed, and the operating system must then be designed to provide the desired

protection. For higher levels of security, the protection scheme may include a security

kernel that is responsible for enforcing the security policy. To encompass all of the parts

of a trusted operating system on which we depend for the correct enforcement of a

126

security policy, the notion of a trusted computing base and its security perimeter can also

be included in the design of a general-purpose or embedded operating system.

The security policy and model, trusted system design elements, and the security

kernel concept are some of the key concepts to consider when building a secure operating

system. Hierarchical structuring, modularity, and information hiding, which were

presented in our study as secure software design principles, are also important elements

of design and implementation. To ensure all of these principles are incorporated into the

development of a secure operating system and maintained throughout its lifecycle,

evaluation methods such as the Common Criteria (CC) and the Trusted Computer System

Evaluation Criteria (TCSEC) can be utilized to establish a level of assurance. Thus, the

operating system will be implemented in such a way that the user has confidence that it

will enforce the security policy, and it will meet the expectations of the user with a

certain degree of trust.

Since operating systems are complex by their nature, the designers of a secure

operating system need to spend time thinking about the structure before writing the code.

When implementation begins, the complexity of the source code should be measured to

limit the size and complexity of the operating system, making it possible to conduct

meaningful testing or certification as determined by evaluation methods such as TCSEC.

The McCabe Cyclomatic Complexity metric, which measures the amount of decision

logic in a software module, is one way to correlate a source module’s complexity to its

error frequency, thereby providing a strong indicator of its testability, as well as its

understandability and receptiveness to modification. Thus, reducing complexity and size

must be the goal in every step of the design, including system specification, design, and

detailed programming. With these goals of constructing source code that is

straightforward and understandable, an automated tool such as Imagix 4D can be a

valuable aid to help each programmer of the project team have a thorough comprehension

of the software, and help produce source code that is less complex, less error-prone, and

easier to test.

127

C. COMPARATIVE ANALYSIS CONCLUSIONS AND COMMENTS
Hierarchical structuring, modularity, information hiding, McCabe complexity,

and number-of-lines-of code composed the basis of the comparative analysis performed

on the Linux, OpenBSD, and Talisker operating systems, kernels, and scheduling

modules.

In the hierarchical structuring analysis, the OpenBSD operating system had the

best design with the fewest number of circular dependencies between each of its software

layers. Linux and Talisker, in this category, fell short with a few more upward

dependencies. In the kernel analysis, however, Linux demonstrated more loops in its

design as compared to Talisker. As Parnas [PAR96] stated, performance goals and

hardware limitations often interfere with structure. As the results from our study

illustrate, operating systems like Talisker and Linux may place functionality and

performance as the primary design goals, rather than giving proper attention to the system

architecture. If an operating system is designed with a layered hierarchy that exhibits

partial ordering, then the upper layers can be removed without affecting the rest of the

system and circular error states between the layers can be avoided.

Regarding modularity, OpenBSD best demonstrated the properties expected of a

good design. In the operating system, kernel, and schedule module analysis, Linux

followed behind OpenBSD. In comparison, Talisker with the fewest number of source

files in its design demonstrated questionable modularity. Good modular programming

helps guarantee that errors in one module will not affect another. With this kind of

control in the design, it is much easier to gain confidence in the reliability of a large

system, since the modular separation helps prevent the spread of trouble created by

malicious activity or flaws in the operating system.

The ranking pattern of OpenBSD first, followed by Linux, and then Talisker was

repeated in the information hiding analysis. Talisker did have a smaller percentage of

global variables in its schedule module as compared to the Linux implementation, but the

commercial operating system did exhibit the largest percentage in the operating system

and kernel portions of the analysis. Regarding good modular programming, information

hiding is an important element that ensures that the interface is well defined. The only

128

way a module’s internal databases or variables should be manipulated is through a

simple, high-level interface, thereby hiding the details of the implementation.

In the analysis of complexity using both the McCabe and lines of code metrics,

OpenBSD does not fare well in comparison to the other two operating systems. Instead,

Linux exhibits the least amount of complexity when reviewing the kernel and schedule

module analysis results. In the operating system portion, however, Talisker was the least

complex. The OpenBSD project team claims that no system installed with default

settings has ever been remotely compromised in the past four years [GEO02]. But how

can this be true if it is more complex in design? The entire source code tree for

OpenBSD is audited for the most frequent of security problems, including buffer

overflows. As commented by Vaughan-Nichols [VAU01], OpenBSD has had a team of

auditors since 1996 working on finding potential problems and fixing them before they

can develop in to security holes, making them more proactive rather than reactive to the

computer security problem. From their extensive design, implementation, and code audit

efforts, the source code is clean, consistent, and correct, providing a level of confidence

that surpasses Linux and other commercial operating systems. This rigorous design

process agrees with McCabe’s argument that complexity measures greater than 10 should

be reserved for projects that have several operational advantages over typical projects,

including experienced staff, formal design, a modern programming language, structured

programming, code walkthroughs, and a comprehensive test plan.

It is also worth mentioning that the first BSD operating system did not consider

security as its first priority. As the Multics case study demonstrated, any attempt to

retrofit security is a difficult task. Therefore, some of the complexity exhibited by

OpenBSD may be remnants of the original BSD design.

Since it places security as its first priority, OpenBSD’s design may be more

complex due to the code it includes for security reasons. With the “daily security audit”

and other features, OpenBSD includes many more auditing cryptographic functions and

that are built into the design and turned on by default.

From Seifried’s [SEI01] online discussions, he gives reasons why Linux will

never be as secure as OpenBSD. He claims that in the Linux world no form of extensive

129

code auditing exists and likely never will. This is due to the vendors of the distributions

having a small security team of less than a dozen people trying to review several hundred

megabytes of source code. Hence, it is common for the original software to be insecure

causing vendors to rely on the maintenance of their own patch sets rather than being

proactive to security problems.

Security requirements may cause the software to exhibit more complexity and be

somewhat less efficient in performance. Thus, the customer of an operating system needs

to weigh the security risks against the performance costs, and try to find a medium that

provides the proper amount of protection in the particular, security threat environment.

Regardless of the complexity, the system development process should be to design the

architecture before implementing it, document the design, review and analyze the

documented design, and review the implementation for consistency with the design.

Using these basic rules, the trusted system design elements, and the secure software

design principles, a more secure operating system may be achieved.

D. FUTURE WORK
Future work may include normalizing and weighting of the data gathered in this

analysis to provide meaningful overall metrics for operating system complexity, as well

as finding a more appropriate set of McCabe threshold values that apply to operating

system design. An inter-function complexity measure may also be useful to determine

the gratuitous use of macros and sub-functions. Additionally, a more granular approach

to the cyclomatic complexity would be useful to distinguish inherent functional

complexity from pathological coding complexity. These improvements to the McCabe

metric could help provide a more detailed result consistent with the expectations of

operating system complexity.

130

THIS PAGE INTENTIONALLY LEFT BLANK

131

LIST OF REFERENCES

[AND72] Anderson, J.P., “Computer Security Technology Planning Study.” U.S. Air
Force Electronic Systems Division Technical Report 73-51, October 1972.

[AND96] Anderson, R., and Kuhn, “Tamper Resistance – A Cautionary Note.” The
Second USENIX Workshop on Electronic Commerce Proceedings,
Oakland, California, November 18-21, 1996, pp. 1-11.

[BBC01] “Microsoft Downplays Hack Attack.” BBC News, October 30, 2000.

[BEL73] Bell, D., LaPadula, L., “Secure Compute Systems: Mathematical
Foundations and Model.” MITRE Report, MTR 2547, Vol.2, November
1973.

[BEN84] Benzel, T., “Analysis of a Kernel Verification.” Proceedings of the IEEE
Symposium on Security and Privacy, IEEE Computer Society Press, 1984,
pp. 125-131.

[BOV01] Bovet, D. P., and Cesati, M., Understanding the Linux Kernel, O’Reilly
and Associates, 2001.

[BRI93] Brinkley, D., and Schell, R., “What Is There to Worry About? An
Introduction to the Computer Security Problem.” Information Security: An
Integrated Collection of Essays, IEEE Computer Society Press, Essay 1,
1993.

[CC99] Common Criteria for Information Technology Security Evaluations,
version 2.1, August 1999.

[COR91] Corbató, F., “On Building Systems That Will Fail.” (1991 Turing Award
Lecture), Communications of the ACM, Vol.34, No.9, September 1991,
pp. 72-81.

[DIJ68] Dijkstra, E.W., “The Structure of the “THE”-Multiprogramming System.”
ACM Symposium on Operating Systems Principles, Vol. 11, No. 5, May
1968, pp. 341-345.

[DER97] Derrick, J., “Cyclomatic Complexity Metrics.” Pascal-central.com, 1997.

[DOD85] Trusted Computer System Evaluation Criteria, DOD 5200.28-STD, U.S.
Department of Defense, December 1985.

[FER92] Final Evaluation Report 92/003, “HFS Incorporated: XTS-200.” National
Computer Security Center, May 27, 1992.

[FER95] Final Evaluation Report 94/34, “Gemini Computers, Incorporated: Gemini
Trusted Network Processor, Version 1.01.” National Computer Security
Center, June 28, 1995.

[GAU70] Gauthier, R., and Pont, S., Designing Systems Programs, Prentice-Hall,
Englewood Cliffs, N.J., 1970.

132

[GRA72] Graham, R., and Denning, P., “Protection – Principles and Practices.”
Proceedings of the AFIPS Spring Joint Computer Conference, Vol.40,
1972, pp. 417-429.

[GEO02] “Linux, OpenBSD, Windows NT/2000 Server Comparison,”
GeodSoft.com, Web Site Design and Development, 2002.

[HAL01] Hall, M., and Maillet, S., “A Taste of Talisker.” Microsoft Corporation,
November 6, 2001.

[HAR76] Harrison, M., Ruzzo, W., and Ullman, J., “Protection in Operating
Systems.” Communications of the ACM, Vol.19, No.8, August 1976, pp.
461-471.

[KAR74] Karger, P., Zurko, M., Bonin D., Mason, A., and Kahn, C., “A VMM
Security Kernel for the VAX Architecture.” Proceedings of the IEEE
Computer Society Symposium on Research in Security and Privacy, IEEE
Computer Society, Oakland, California, May 7-9, 1990, pp. 2-19.

[LAM71] Lampson, B., “Protection.” Proceedings of the Fifth Princeton Symposium
on Information Sciences and Systems, Princeton University, March 1971,
pp. 437-443.

[LAM76] Lampson, B., and Sturgis, H., “Reflections on Operating System Design.”
Communications of the ACM, Vol.19, No.5, May 1976, pp. 251-266.

[LEH99] Lehey, G., “Explaining BSD.” Enderunix.org, April 1999.

[LEM01] Lemos, R., “Microsoft Warns of Hijacked Certificates.” CNET News.com,
March 22, 2001.

[MCC96] McCabe, T. J., “Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric.” NIST Special Publication 500-235,
Computer Systems Laboratory, MD, September 1996.

[MCW01] McWilliams, B., “Suspect Claims Al Qaeda Hacked Microsoft.”
Newsbytes, December 17, 2001.

[MYE80] Myers, P.A., Subversion: The Neglected Aspect of Computer Security,
Master of Science Thesis, Naval Postgraduate School, Monterey,
California, June 1980.

[NIS91] NIST (National Institute of Standards and Technology), “Glossary of
Computer Security Terminology.” NIST Technical Report, NISTIR 4659,
September 1991.

[PAR72] Parnas, D. L., “On the Criteria To Be Used in Decomposing Systems into
Modules.” Communications of the ACM, Vol. 15, No. 12, December 1972,
pp. 1053-1058.

[PAR96] Parnas, D. L., “Why Software Jewels are Rare.” IEEE Magazine, Vol.29,
No.2, February 1996, pp. 57-60.

[PET00] Peters, J., and Pedrycz, W., Software Engineering: An Engineering
Approach, John Wiley and Sons, 2000.

133

[PFL97] Pleeger, C. P., Security in Computing, Second Edition, Prentice Hall,
1997.

[SAL75] Saltzer, J.H., and Schroeder, M.D., “The Protection of Information in
Computer Systems.” Proceedings of the IEEE, Vol.63, No. 9, September
1975, pp. 1278-1308.

[SCH75] Schroeder, M.D., “Engineering a Security Kernel for Multics.”
Proceedings of The Fifth Symposium on Operating Systems Principles,
November 1975, pp. 25-31.

[SCH77] Schroeder, M.D., Clark, D.D., and Saltzer, J.H., “The Multics Kernel
Design Project.” Proceedings of Sixth ACM Symposium on Operating
Systems Principles, November 1977, pp. 43-56.

[SEI90] Seiden, K., and Melanson, J., “The Auditing Facility for a VMM Security
Kernel.” Proceedings of the IEEE Symposium on Security and Privacy,
IEEE Computer Society Press, 1990, pp. 262-277.

[SEI01] Siefried, K., “Why Linux Will Never Be As Secure As OpenBSD,”
Siefried.org, Information Security, August 11, 2001.

[SHA74] Shaw, A. C., The Logical Design of Operating Systems, Prentice Hall,
1974.

[STA98] Stallings, W., Operating Systems Internals and Design Principles, Third
Edition, Prentice-Hall, 1998.

[THO84] Thompson, K., “Reflections on Trusting Trust.” (1983 Turing Award
Lecture), Communications of the ACM, Vol.27, No.8, August 1984, pp.
761-763.

[VAU01] Vaughan-Nichols, S., “OpenBSD: The Most Secure OS Around.”
ZDNet.com, ZDNet Tech Update, November 6, 2001.

[WIR95] Wirth, N., “A Plea for Lean Software.” IEEE Magazine, Vol.28, No.2,
February 1995, pp. 64-68.

134

THIS PAGE INTENTIONALLY LEFT BLANK

135

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Commander, Naval Security Group Command
 Naval Security Group Headquarters
 Fort Meade, Maryland

San Diego, California

4. Commander Officer
 Space and Naval Warfare Systems Center – San Diego

San Diego, California

5. Ms. Deborah M. Cooper
 Deborah M. Cooper Company

 Arlington, Virginia

6. Ms. Louise Davidson
 N643
 Arlington, Virginia

7. Ms. Elaine S. Cassara
 Branch Head, Information Assurance
 United States Marine Corps
 Washington, DC

8. Mr. William Dawson

 Community CIO Office
Washington, DC

9. Ms. Deborah Phillips
 Community CIO Office
 Washington, DC

10. Capt. Robert A. Zellman

 CNO N6
 Arlington, Virginia

136

11. Dr. Ralph Wachter
 Office of Naval Research

 Arlington, Virginia

12. Major Dan Morris
 HQMC, C4IA Branch
 Washington, DC

13. Mr. Richard Hale
 Defense Information Systems Agency
 Falls Church, Virginia

14. James P. Anderson

James P. Anderson Co.
 Ambler, Pennsylvania

15. Mr. David Ladd

Microsoft Corporation
 Redmond, Washington

16. Mr. Steve Lipner

Microsoft Corporation
 Redmond, Washington

17. Mr. Rui Maximo

Microsoft Corporation
 Redmond, Washington

18. Mr. John SanGiovanni

Microsoft Corporation
 Redmond, Washington

19. Mr. Miguel Claudio

Microsoft Corporation
 Redmond, Washington

20. Mr. Mike Thomson

Microsoft Corporation
 Redmond, Washington

21. Mr. Sergio Cherskov

Microsoft Corporation
Redmond, Washington

137

22. Mr. John H. Townsend
Information Assurance and Engineering Division (D87)

 SPAWAR Systems Center – San Diego
San Diego, California

23. Mr. John E. Sherwood

Code 723JES
SPAWAR Systems Center - Charleston

 North Charleston, South Carolina

24. Mr. John Blattner
Imagix Corporation

 San Luis Obispo, California

25. Dr. Annie I. Antón
North Carolina State University
Department of Computer Science

 Raleigh, North Carolina

26. Dr. Cynthia E. Irvine
 Computer Science Department, Code CS/IC

Naval Postgraduate School
Monterey, California

27. Mr. Timothy Levin
 Computer Science Department, Code CS

Naval Postgraduate School
Monterey, California

	I.	INTRODUCTION
	A.	PURPOSE
	B.	MOTIVATION
	C.	EXPECTED BENEFITS OF RESEARCH
	D.	RESEARCH OBJECTIVES
	E.	THESIS ORGANIZATION

	II.	OVERVIEW OF SECURE OPERATING SYSTEMS
	A.	INTRODUCTION
	When computers were first used for automated data processing, few considered the importance of information security outside the realm of physical security. If the system designer never addressed parameter checking to protect the user from crashing his o

	B.	ASSESSMENT OF THREATS TO SECURITY
	Undertaken by the Air Force, the Advanced Research Projects Agency (ARPA), and other defense agencies, a study was conducted to provide a solution for the technical problems associated with controlling the flow of information in resource and information
	One attempt to address security flaws in operating system and application design is appropriately named the “penetrate and patch” approach. Using this methodology, a “tiger team” of testers, code auditors, and hostile programmers are tasked to test the
	Class I (Clever Outsiders): These individuals are often very intelligent but may have little knowledge of the system internals. They only have access to moderately sophisticated equipment and often take advantage of known flaws.
	Class II (Knowledgeable Insiders): These may be employees that have substantial specialized technical education and experience, have varying degrees of understanding certain parts of the system, but potentially have unlimited access. They often have sop

	C.	PROTECTION IN OPERATING SYSTEMS
	In 1971, Butler Lampson [LAM71] defined “protection” as a general term for all of the mechanisms that control the access of a program to system resources. The original motivation for putting such mechanisms into computer systems was to keep one user’s m
	Saltzer and Schroeder [SAL75] suggested a division of protection schemes according to functional properties into five categories: unprotected, all-or-nothing, controlled sharing, user-programmed controlled sharing, and putting attributes on information.
	The access control model for confidentiality was first introduced by Lampson [LAM71] and was refined by Graham and Denning [GRA72]. Harrison, Ruzzo, and Ullman [HAR76] later used Lampson’s concept of an access control model to analyze the complexity of
	Bell and LaPadula’s [BEL73] formal policy model included mandatory access control. The model introduced the additions of labels for subjects and objects and the simple security policy and the *-property. These two properties for confidentiality provide

	D.	THE REFERENCE MONITOR CONCEPT
	The Reference Monitor Concept, which emerged as part of the Anderson Report in 1972, provides a description of an ideal mechanism representing the necessary and sufficient functions to enforce a policy to control access by subjects to objects. A subject
	The implementation of the reference monitor has been called the reference validation mechanism, a combination of hardware and software [AND72]. The current access authorizations, graphically modeled as the current access matrix, represent who has access
	From this abstract model, one can observe that the reference monitor enforces the authorized access relationships between the subjects and objects of a system. User identification, clearance levels, and current session levels could all be attached to a
	To establish that the model’s behavior complies with the requirements of an access control policy, a “basic security theorem” may be included in the model. For example, if it is shown that the current access authorizations (CAA) is a subset of the autho

	E.	THE TRUSTED COMPUTING BASE
	The National Institute of Standards and Technology (NIST), defines the trusted computing base (TCB) as the set of all protection mechanisms in a computing system, including the hardware, firmware, and software, which together enforce a unified security p

	F.	CONCLUSION

	III.	BUILDING A SECURE OPERATING SYSTEM
	A.	INTRODUCTION
	Ken Thompson [THO84] has commented that, by default, an application should not be trusted if the end user did not write the code himself. He further stated that no matter how much a posteriori source-level verification or scrutiny is completed, no amoun
	In the Anderson Report [AND72], the steps to build a secure system involved creating a model or ideal description of a secure system followed by the development of the security portion of the system or the security kernel, which would later be integrated

	B.	THE SECURITY POLICY AND MODEL
	1.	The Policy

	C.	TRUSTED SYSTEM DESIGN ELEMENTS
	Prior to discussing the design of a trusted operating system, it would be beneficial to review the eight design principles that have been provided from the experiences of others who invested considerable time and energy in system research. These eight w
	In setting the fail-safe defaults, the designer, acting conservatively in the interest of the user, needs to identify what items should be accessible rather than those that should not. Therefore, the default condition should be denial of access.
	To obtain complete mediation, every access attempt must be checked. This means that the mechanism for checking these access attempts needs to be positioned correctly so it can mediate direct access attempts. It must be designed so that attempts to circ
	An open design simply means that the design should not be secret. With the exception of a few key items like password tables, the source code should be open to extensive public scrutiny to help provide criticism, new ideas, and independent confirmation
	Separation of privilege is common in the commercial business world and makes good sense here in the design of secure systems. Ideally, access to objects should depend on more than just an <identification, password> pair; for some systems, this could mea

	D.	SECURE SOFTWARE DESIGN PRINCIPLES
	1.	Modular Programming
	3.	Information Hiding

	E.	THE SECURITY KERNEL
	F.	EVALUATION
	G.	ASSURANCE
	H.	THE MULTICS EXPERIENCE
	1.	Constructing a Secure System
	2.	Common Mechanism Risks
	3.	Complexity and Dependencies
	4.	Security Kernel Design
	a.	Non-kernel Software
	b.	Multics Security Kernel Goals
	c.	Categories of Security Kernel Activities
	d.	Redefining Key Aspects of the Project
	e.	Conclusions of the Kernel Design and Redesign

	IV.	MANAGING COMPLEXITY IN OPERATING SYSTEM DESIGN
	A.	INTRODUCTION
	B.	BUILDING SYSTEMS THAT FAIL
	C.	SOFTWARE COMPLEXITY
	D.	COMPLEXITY AND TESTING
	E.	MCCABE CYCLOMATIC COMPLEXITY METRIC
	Definition and Applications
	2.	Limiting the Cyclomatic Complexity
	3.	Simplified Complexity Calculations
	4.	Automated Tool

	V.	IMAGIX 4D REVERSE ENGINEERING TOOL
	A.	INTRODUCTION
	B.	DATA MODEL
	C.	VIEWS AND DISPLAY WINDOWS
	1.	Graph Window
	2.	Graph Symbols Key
	3.	List Window
	4.	File and Class Browsers
	5.	Flow Chart
	6.	File Editor
	7.	Reports

	D.	MODES OF OPERATION
	1.	Browsing the Source Code
	2.	Exploration and Analysis of the Source Code
	3.	Control Flow Analysis of the Source Code

	D.	CONCLUSION

	VI.	COMPLEXITY ANALYSIS OF LINUX, OPENBSD, AND TALISKER
	A.	INTRODUCTION
	B.	BACKGROUND
	1.	Linux
	2.	OpenBSD
	3.	Talisker

	C.	BASIS FOR ANALYSIS
	2.	Modular Programming
	3.	Information Hiding
	4.	McCabe Cyclomatic Complexity
	5.	Number-of-Lines-of-Code

	D.	SOURCE CODE FILES INCLUDED IN THE ANALYSIS
	1.	Operating System Source Code
	2.	Kernel Source Code

	E.	INFORMATION GATHERED FROM IMAGIX 4D
	1.	Function Call Graphs
	a.	Kernel Function Hierarchies
	b.	Schedule Module Function Hierarchies
	c.	Operating System Layering
	d.	Kernel Layering

	2.	File Summary Reports
	a.	Operating System Files
	b.	Kernel Files

	3.	Function Information Reports
	a.	Operating System Functions
	b.	Kernel Functions

	4.	Global Variable Graphs

	F.	ANALYSIS OF DATA GATHERED
	
	a.	Operating System Complexity
	b.	Kernel Complexity

	G.	COMPLEXITY IN OPERATING SYSTEMS
	H.	CONCLUSION

	VII.	CONCLUSION
	A.	OPERATING SYSTEM SECURITY REQUIREMENTS
	It is important to note that system security requirements exist as a management tool. In essence, this tool assists in the identification and prioritization of project implementation decisions, which impact the evolution of a reasonably secure operating
	When weighing performance requirements against system security requirements, a balance must be defined and preserved. It is of little value to a user of a high performance operating system if resource availability is sporadic due to control or manipulat

	B.	SECURE OPERATING SYSTEM DEVELOPMENT
	As stated by Anderson [AND96], we should never forget that the great majority of actual security failures in operating systems result from simple blunders in design, construction, and operation.

	C.	COMPARATIVE ANALYSIS CONCLUSIONS AND COMMENTS
	D.	FUTURE WORK

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

